Vegetable grafting: a green technique to combat biotic and abiotic stresses

*Article not assigned to an issue yet

,


Review Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-023-00752-9
First Page: 0
Last Page: 0
Views: 1515


Keywords: Vegetable grafting, Biotic stress, Abiotic stress, Resistance


Abstract


Grafting creates a new plant by physically combining two plants with different genetic backgrounds. It is commercially practiced in Solanaceous and Cucurbitaceous vegetables. Currently, this technique is widely adopted in the major vegetable growing tracts of the world for the management of biotic and abiotic stresses. The technique mainly relies on the resistant trait offered by the rootstock. The success of grafting depends upon the identification of resistant rootstocks as well as compatible rootstock scion combinations. Even though this is a century-old technique, it is still significant for the mitigation of many recently aroused production problems in vegetable cultivation. Apart from improving stress tolerance, it also contributes to improvements in yield and quality of vegetables. This review discusses the scope of using grafting as a potential tool for the management of biotic and abiotic stresses, as well as the underlying resistance mechanisms at the physiological and biochemical levels.


Vegetable grafting, Biotic stress, Abiotic stress, Resistance


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Abdelmageed AHA, Gruda N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Europ J Hort Sci 74(1):16–20


Aidoo MK, Sherman T, Ephrath JE, Fait A, Rachmilevitch S, Lazarovitch N (2017) Grafting as a method to increase the tolerance response of bell pepper to extreme temperatures. Vadose Zone J 17:170006. https://doi.org/10.2136/vzj2017.01.0006


Albacete A, Andújar C, Pérez-Alfocea F, Lozano J, Asins M (2015) Rootstock mediated variation in tomato vegetative growth under low potassium or phosphorous supplies. Acta Hort 1086:147–152


Al-Harbi A, Hejazi A, Al-Omran A (2017) Responses of grafted tomato (Solanum lycopersiocum L.) to abiotic stresses in Saudi Arabia. Saudi J Biol Sci 24:1274–1280


Altunlu H, Gul A (2012) Increasing drought tolerance of tomato plants by grafting. Acta Hort 960:183–190


Atlin G, Cairns J, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12:31–37


Attavar A, Tymon L, Perkins-veazie P, Miles CA (2020) Cucurbitaceae germplasm resistance to verticillium wilt and grafting compatibility with watermelon. Hort Sci 55(2):141–148


Ayala-Donas A, Cara-Garcia M, Talavera-Rubia M, Verdejo-Lucas S (2020) Management of soil-borne fungi and root-knot nematodes in cucurbits through breeding for resistance and grafting. Agronomy 10:1641. https://doi.org/10.3390/agronomy10111641


Bahadur A, Rai N, Kumar R, Tiwari SK, Singh AK, Rai AK, Singh U, Patel PK, Tiwari V, Rai AB, Singh M, Singh B (2015) Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Veg Sci 42(2):82–87


Ban SG, Zanic K, Dumicic G, Raspudic E, Vuletin Selak GVG, Ban D (2014) Growth and yield of grafted cucumbers in soil infested with root-knot nematodes. Chilean J Agric Res 74(1):29–34


Berlanger I, Powelson ML (2000) Verticillium wilt. The plant health instructor. https://doi.org/10.1094/PHI-I-2000-0801- 01 [Accessed 20 Sep 2020]


Bhatt R, Upreti K, Divya MH, Bhat S, Pavithra CB, Sadashiva AT (2015) Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci Hortic 182:8–17. https://doi.org/10.1016/j.scienta.2014.10.043


Black LL, Wu DL, Wang JF, Kalb T, Abbass D, Chen JH (2003) Grafting tomatoes for production in the hot-wet season. International Cooperators’ Guide. Asian Vegetable Research and Development Center, Shanhua, Taiwan.


Bletsos F, Thanassoulopoulos C, Roupakias D (2003) Effect of grafting on growth, yield and verticillium wilt of egg plant. Hort Sci 38(1):183–186


Bohm V, Fekete D, Balázs G, Gaspar L, Kappe N (2017) Salinity tolerance of grafted watermelon Seedlings. Acta Biol Hung 68(4):412–427. https://doi.org/10.1556/018.68.2017.4.7


Boncato T, Ellamar J (2015) Off-season tomato production: a new technology in Tarlac province of Philippines. Acta Hortic 1086:261–267


Buller S, Inglis D, Miles C (2013) Plant growth, fruit yield and quality, and tolerance to verticillium wilt of grafted watermelon and tomato in field production in the Pacific Northwest. Hort Sci 48:1003–1009


Castillo EG, Tuong TP, Ismail AM, Inubushi K (2007) Response to salinity in rice: comparative effects of osmotic and ionic stresses. Plant Prod Sci 10:159–170


Cohen R, Burger Y, Horev C, Koren A, Edelstein M (2007) Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Dis 91:916–923


Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127(2):147–155. https://doi.org/10.1016/j.scienta.2010.08.004


Cortez- Madrigal H (2012) Grafts of crops on wild relatives as base of an integrated pest management: the tomato Solanum lycopersicum as example. In: Solenski S, Larramendy LM (eds) Integrated pest management and pest control – current and future tactics. IntechOpen, London, pp 127–146. https://doi.org/10.5772/1383


Crino P, Bianco CL, Rouphael Y, Colla G, Saccardo F, Paratore A (2007) Evaluation of rootstock resistance to Fusarium wilt and gummy stem blight and effect on yield and quality of grafted ‘Inodorus’ melon. Hort Sci 42:521–525


Dabirian S, Inglis D, Miles CA (2017) Grafting watermelon and using plastic mulch to control Verticillium wilt caused by Verticillium dahliae in Washington. Hortic Sci 52(3):349–356


Davis AR, Perkins-Veazie P, Sakata Y, Lopez-Galarza S, Maroto JV, Lee SG, Huh YC, Sun Z, Miguel A, King SR, Cohen R, Lee JM (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74


Devi P, Perkins-veazie P, Miles CA (2020) Rootstock and plastic mulch effect on watermelon flowering and fruit maturity in a Verticillium dahliae-infested field. Hort Sci. https://doi.org/10.21273/HORTSCI15134-20


Duan X, Liu F, Bi H, Ai X (2022) Grafting enhances bacterial wilt resistance in peppers. Agric 12:583. https://doi.org/10.3390/agriculture12050583


Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I (2005) Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil 269:273–284


Gao P, Xing WW, Li SH, Shu S, Li H, Li N, Shao QS, Guo SR (2015) Effect of pumpkin rootstock on antioxidant enzyme activities and photosynthetic fluorescence characteristics of cucumber under ca(no3)2 stress. Acta Hortic 1086:177–187. https://doi.org/10.17660/ActaHortic.2015.1086.22


Gioia FD, Signore A, Serio F, Santamaria P (2013) Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. Hort Sci 48(7):855–862


Gisbert-Mullor R, Padilla YG, Martínez-Cuenca MR, L’Opez-Galarza S, Calatayud A (2021) Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Sci Hortic 290:110529. https://doi.org/10.1016/j.scienta.2021.110529


Guan W, Zhao X, Hassell R, Thies J (2012) Defense mechanisms involved in disease re-sistance of grafted vegetables. Hort Sci 47:164–170


Guan W, Zhao X, Dickson DW, Mendes ML, Thies J (2014) Root-knot nematode resistance, yield, and fruit quality of specialty melons grafted onto Cucumis metulifer. Hort Sci 49(8):1046–1051


Guan W, Haseman D, Nowaskie D (2020) Rootstock evaluation for grafted cucumbers grown in high tunnels: yield and plant growth. Hort Sci 55(6):914–919. https://doi.org/10.21273/HORTSCI14867-20


Haghighi M, Sheibanirad A (2021) Improving physiological characteristics of grafted cucumber under drought stress. J Horti Sci 34(4):577–591


Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370


Hunt D, Handoo Z (2009) Taxonomy, identification and principal species. In: Perry RN, Moens M, Starr JL (eds) Starr root- knot nematodes. CAP International, London, UK, pp 55–88


Jang Y, Yang E, Cho M, Um Y, Ko K, Chun C (2012) Effect of grafting on growth and incidence of phytophthora blight and bacterial wilt of pepper (Capsicum annuum L.). Hort Environ Biotechnol 53(1):9–19


Johnson S, Inglis D, Miles C (2014) Grafting effects on eggplant growth, yield, and verticillium wilt Incidence. Int J Veg Sci 20:3–20


Kato C, Ohshima N, Kamada H, Satoh S (2001) Enhancement of the inhibitory activity for greening in xylem sap of squash root with waterlogging. Plant Physiol Biochem 39(6):513–519. https://doi.org/10.1016/S0981-9428(01)01262-1


Kawaide T (1985) Utilization of rootstocks in cucurbits production in Japan. Jpn Agr Res 18:284–289


Keinath AP, Hassell RL (2014) Suppression of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum race 2 on grafted triploid watermelon. Plant Dis 98:1326–1332


King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. Hort Sci 43(6):1673–1676


Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01335


Kumar P, Lucini L, Rouphael Y, Cardarelli M, Kalunke RM, Colla G (2015) Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477. https://doi.org/10.3389/fpls.2015.00477


Kumar P, Rouphael Y, Cardarelli M, Colla G (2017) Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front Plant Sci 8:1130. https://doi.org/10.3389/fpls.2017.01130


Kumbar S, Narayanankutty C, Kurian PS, Sreelatha U, Barik S (2021) Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease. Eur J Plant Pathol. https://doi.org/10.1007/s10658-021-02305-9


Kunwar S, Paret ML, Olson SM, Ritchie L, Rich JR, Freeman J, McAvoy T (2015) Grafting using rootstocks with resistance to Ralstonia solanacearum against Meloidogyne incognita in tomato production. Plant Dis 99:119–124


Kyriacou MC, Rouphael Y, Colla G, Zrenner RM, Schwarz D (2017) Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front Plant Sci 8:741. https://doi.org/10.3389/fpls.2017.00741


Kyriacou MC, Colla G, Rouphael Y (2020) Grafting as a sustainable means for securing yield stability and quality in vegetable crops. Agronomy 10:1945. https://doi.org/10.3390/agronomy10121945


Latifah E, Widaryanto E, Maghfoer MD (2019) Effect of water logging duration on growth phases of tomatoes (Solanum lycopersicum L.) grafted on eggplant rootstock. J Agron 18:11–20


Li S, Liu Y, Wang J, Yang L, Zhang S, Xu C, Ding W (2017) Soil acidification aggravates the occurrence of bacterial wilt in South China. Front Microbiol 8:703. https://doi.org/10.3389/fmicb.2017.00703


Liao CA, Lin C (1996) Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ Experiment Bot 36(2):167–172. https://doi.org/10.1016/0098-8472(96)01009-X


Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS ONE 8:e63383


Liu J, Li J, Su X, Xia Z (2014) Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environ Exp Bot 107:173–179. https://doi.org/10.1016/j.envexpbot.2014.06.012


Liu S, Li H, Lv X, Ahammed GJ, Xiaojian Xia X, Zhou J, Shi K, Asami T, Yu J, Zhou Y (2015a) Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Sci Rep. https://doi.org/10.1038/srep20212


Liu B, Ren J, Zhang Y, An J, Chen M, Chen H, Xu C, Ren H (2015b) A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agron Sustain Dev 35:251–259


López-Serrano L, Canet-Sanchis GV, Selak G, Penella CS, Bautista A, López-Galarza S, Calatayud Á (2019) Pepper rootstock and scion physiological responses under drought stress. Front Plant Sci 10:38. https://doi.org/10.3389/fpls.2019.00038


Louws FJ, Rivard CL, Kubota C (2010) Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci Hort 127:127–146


Lu K, Sun J, Li Q, Li X, Jin S (2021) Effect of cold stress on growth, physiological characteristics, and calvin-cycle-related gene expression of grafted watermelon seedlings of different gourd rootstocks. Horticulturae 7:391. https://doi.org/10.3390/horticulturae7100391


Lu J, Cheng F, Huang Y, Bie Z (2022) Grafting watermelon onto pumpkin increases chilling tolerance by up regulating arginine decarboxylase to increase putrescine biosynthesis. Front Plant Sci 12:812396. https://doi.org/10.3389/fpls.2021.812396


Wahb-Allah MA (2014) Effectiveness of grafting for the improvement of salinity and drought tolerance in tomato (Solanum lycopersicon L.). Asian J Crop Sci 6(2):112–122. https://doi.org/10.3923/ajcs.2014.112.122


Manickam R, Chen JR, Cardona PS, Kenyon L, Srinivasan R (2021) Evaluation of different bacterial wilt resistant eggplant rootstocks for grafting tomato. Plants 75(10):2–12. https://doi.org/10.3390/plants10010075


McAvoy T, Freeman JH, Rideout SL, Olson SM, Paret ML (2012) Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. Hort Sci 47(5):621–625


Moharana DP, Singh RK, Kashyap SP, Rai N, Bhardwaj DR, Singh AK (2021) Response of solanaceous vegetables to increasing temperature and atmospheric CO2. In: Solankey SS, Kumari M, Kumar M (eds) Advances in research on vegetable production under a changing climate, vol 1. Springer Nature, Switzerland, pp 91–111. https://doi.org/10.1007/978-3-030-63497-1_4


Moretti CL, Mattos LM, Calbo AG, Sargent SA (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res Int 43(7):1824–1832


Muneer S, Ko CH, Wei H, Chen Y, Jeong BR (2016) Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE 11(6):e0157439. https://doi.org/10.1371/journal.pone.0157439


Murata J, Ohara K (1936) Prevention of watermelon fusarium wilt by grafting Lagenaria [in Japanese]. Jpn J Phytopathol 6:183–189


Nakaho K (2021) Mechanisms of resistance to Ralstonia solanacearum in tomato rootstocks and integrated management of bacterial wilt using high grafting. J General Plant Pathol 87:398–402


Okorley BA, Agyeman C, Amissah N, Nyaku ST (2018) Screening selected Solanum plants as potential rootstocks for the management of root-knot nematodes (Meloidogyne incognita). Hindawi Int J Agron. https://doi.org/10.1155/2018/6715909


Padilla YG, Gisbert- Mullor R, López-Serrano L, López-Galarza S, Calatayud Á (2021) Grafting enhances pepper water stress tolerance by improving photosynthesis and antioxidant defense systems. Antioxidants 10:576. https://doi.org/10.3390/antiox10040576


Papadaki AM, Bletsos FA, Menexes G, Ismail AM, Lagopodi AL (2017) Effectiveness of six rootstocks for Fusarium wilt control in cucumber, and their influence on growth, yield, and fruit quality characteristics. J Plant Pathol 99(3):349–356


Penella C, Nebauer SG, Lopez-Galarza S, SanBautista A, Rodríguez-Burruezo A, Calatayud A (2014) Evaluation of some pepper genotypes as rootstocks in water stress conditions. Hort Sci (prague) 41:192–200


Peng YQ, Zhu J, Li WJ, Gao W, Shen RY, Meng LJ (2020) Effects of grafting on root growth, anaerobic respiration, enzyme activity, and aerenchyma of bitter melon under waterlogging stress. Sci Hortic. https://doi.org/10.1016/j.scienta.2019.108977


Pericas MF, Conesa MA, Carbo MR, Galmes J (2020) The use of a tomato landrace as rootstock improves the response of commercial tomato under water deficit conditions. Agronomy 10:748. https://doi.org/10.3390/agronomy10050748


Petran A, Hoover E (2014) Solanum torvum as a compatible rootstock in interspecific tomato grafting. J Horti. https://doi.org/10.4172/2376-0354.1000103


Rahman MA, Rashida MA, Salam MA, Masud MAT, Masum ASMH, Hossain MM (2002) Performance of some grafted egg plant genotypes on wild solanum rootstock against root knot nematode. Online J Biol Sci 2(7):446–448


Ramesh R, D’Souza M, Asolkar T, Achari G, Gupta MJ (2022) Rootstocks for the management of bacterial wilt in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.) in the coastal regions of India. Adv Agric. https://doi.org/10.1155/2022/8594080


Rana S, Kumar P, Sharma P, Singh A, Upadhyay SK (2015) Evaluation of different rootstocks for bacterial wilt tolerance in bell pepper [Capsicum annuum (L.) var. grossum (Sendt.)] under protected conditions. Himachal J Agric Res 41(1):100–103


Ranjan JK, Kumar R, Karmakar P (2015) Grafting techniques in vegetables. In: Singh N, Roy S, Karmakar P, Chaurasia SNS, Gupta S, Singh B (eds) Improved production technology in vegetables. ICAR-IIVR, Varanasi, pp 205–210


Reimers H (2000) Climate change and global crop productivity. Agr Ecosyst Environ 3(81):232–233. https://doi.org/10.1016/S0167-8809(00)00208-5


Reyad NEA, El-sayed SF, Azoz SN (2021) Evaluation of grafting using cucurbit interspecific hybrids to control fusarium wilt in cucumber. Plant Cell Biotechnol Molecular Biol 22(37&38):50–63


Ristaino JB, Thomas W (1997) Agriculture, methyl bromide and the ozone hole: can we fill the gaps? Plant Dis 81:964–977


Rivard CL, O’Connell S, Peet MM, Louws FJ (2010) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94:1015–1021


Rivard CL, O’Connell S, Peet MM, Welker RM, Louws FJ (2012) Grafting tomato to manage bacterial wilt caused by Ralstoniam solanacearum in the southeastern United States. Plant Dis 96:973–978


Rivero RM, Ruiz JM, Romero L (2003) Can grafting in tomato plants strengthen resistance to thermal stress? J Sci Food and Agric 83(13):1315–1319. https://doi.org/10.1002/jsfa.1541


Rouphael Y, Schwarz D, Krumbein A, Colla G (2010) Impact of grafting on product quality of fruit vegetables. Sci Hortic 127:172–179


Rouphael Y, Rea E, Cardarelli M, Bitterlich M, Schwarz D, Colla G (2016) Can adverse effects of acidity and aluminum toxicity be alleviated by appropriate rootstock selection in cucumber? Front Plant Sci 7:1283. https://doi.org/10.3389/fpls.2016.01283


Rouphael Y, Kyriacou MC, Colla G (2018) Vegetable grafting: a toolbox for securing yield stability under multiple stress conditions. Front Plant Sci 8:2255. https://doi.org/10.3389/fpls.2017.02255


Rowe RC, Davis JR, Powelson ML, Rouse DI (1987) Potato early dying: causal agents and management strategies. Plant Dis 71:482–489


Sakata Y, Ohara T, Sugiyama M (2007) The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort 731:159–170


Santhosha HM, Indiresh KM, Gopalakrishnan C, Singh TH (2015) Evaluation of brinjal genotypes against bacterial wilt caused by Ralstonia solanacearum. J Hortic Sci 10(1):74–78


Savvas D, Colla G, Rouphael Y, Schwarz D (2010) Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hort 127:156–161


Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127:162–171. https://doi.org/10.1016/j.scienta.2010.09.016


Semiz GD, Suarez DL (2015) Tomato salt tolerance: impact of grafting and water composition on yield and ion relations. Turk J Agric for 39:876–886


Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Zaman M, Shahid SA, Heng L (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer International Publishing, Cham, pp 43–53. https://doi.org/10.1007/978-3-319-96190-3_2


Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant-parasitic nematodes in subtropical and tropical agriculture. CABI Publishing, Wallingford, UK, pp 319–392


Singh H, Sethi S, Kaushik P, Fulford A (2020) Grafting vegetables for mitigating environmental stresses under climate change: a review. J Water Climate Change 11(4):1784–1797


Smith CL, Freeman JH, Kokalis-Burelle N, Wechter WP (2019) Screening cucurbit rootstocks for resistance to Meloidogyne spp. and Rotylenchulus reniformis. Hort Sci 54(1):125–128


Suárez-Hernández AM, Vázquez-Angulo JC, Grimaldo-Juárez O, Ceceña-Durán C, González-Mendoza D, Bazantegonzález I, Mendoza-Gómez A (2019) Production and quality of grafted watermelon in saline soil. Hortic Bras 37:215–220. https://doi.org/10.1590/S0102-053620190213


Suarez-Hernandez AM, Grimaldo-Juarez O, Cecena-Duran C, Bazante-Gonzalez I, Nunez- Ramirez F, Gonzalez-Mendoza D (2021) Plant growth and quality of cucumber grafted with Lagenaria siceraria in soil infested with nematodes. Emirates J Food Agric 33(1):67–72. https://doi.org/10.9755/ejfa.2021.v33.i1.2565


Suchoff DH, Perkins-Veazie P, Sederoff HW, Schultheis JR, Kleinhenz MD, Louws FJ, Gunter CC (2018) Grafting the indeterminate tomato cultivar moneymaker onto multifort rootstock improves cold tolerance. Hort Sci 53(11):1610–1617


Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A (2010) Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94:1195–1199


Tirupathamma TL, Ramana CV, Naidu LN, Sasikala K (2019) Vegetable grafting: a multiple crop improvement methodology. Current J Appl Sci Technol 33(3):1–10


Ulas F, Aydın A, Ulas A, Yetisir H (2019) Grafting for sustainable growth performance of Melon (Cucumis melo) under salt stressed hydroponic condition. Eur J Sustain Dev 8(1):201–210


Venema JH, Dijk BE, Bax JM, Van Hasselt PR, Elzenga JTM (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot 63(1–3):359–367. https://doi.org/10.1016/j.envexpbot.2007.12.015


Verdejo-Lucas S, Talavera M (2019) Root-knot nematodes on zucchini (Cucurbita pepo subsp. pepo): pathogenicity and management. Crop Prot 126:104943. https://doi.org/10.1016/j.cropro.2019.104943


Wheeler WB, Kawar NS (1997) Environmental hazards fumigants: the need for safer alternatives. Arab J Plant Prot 15:154–162


Wimer J, Inglis D, Miles C (2015) Evaluating grafted watermelon for verticillium wilt severity, yield, and fruit quality in Washington state. Hort Sci 50(9):1332–1337


Xu Y, Guo S, Li H, Sun H, Lu N, Shu S, Sun J (2017) Resistance of cucumber grafting rootstock pumpkin cultivars to chilling and salinity stresses. Hortic Sci Technol 35(2):220–231


Xu Y, Yuan Y, Du N, Wang Y, Shu S, Sun J, Guo S (2018) Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Hortic Res 5:53. https://doi.org/10.1038/s41438-018-0060-z


Yanyan Y, Shuoshuo W, Min W, Biao G, Qinghua S (2018) Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Hortic Plant J 4(6):239–249


Yin LK, Zhao WC, Shu C, Li XM, Fan JW, Wang SH (2015) Role of protective enzymes in tomato rootstocks to resist root knot nematodes. Acta Hort 1086:213–218


Zhang Z, Liu Y, Cao B, Chen Z, Xu K (2020) The effectiveness of grafting to improve drought tolerance in tomato. Plant Growth Regul 91:157–216




 


Acknowledgements



Author Information


Remzeena A.
Department of Vegetable Science, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, India
remzeena-2019-22-018@student.k
Anitha P.
Department of Vegetable Science, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, India