*Article not assigned to an issue yet
Keywords: n Calendulan , Callus, in vitro propagation, Molecular markers, Nanoparticles, secondary metabolites
Calendula spp. has antipyretic, anti-inflammatory, antiepileptic and antibacterial properties and is widespread in Central and Southern Europe, Western Asia and the United States. Natural propagation by seed is limited due to low germination rates, and propagation by cuttings is labor intensive and time consuming. Biotechnological approaches offer efficient strategies to increase the number of plants while increasing the production of valuable secondary metabolites. This review aims to summarize the current state of knowledge on the geographical distribution, botanical characteristics, pharmaceutical applications, in vitro propagation techniques, secondary metabolites and acclimatization strategies of Calendula spp. he main results show that optimized in vitro protocols, molecular markers and nanotechnology-including the environmentally friendly synthesis of nanoparticles-significantly improve plant reproduction, genetic stability and the accumulation of bioactive substances. By highlighting achievements and identifying research gaps between 2005 and 2025, this review emphasizes the importance of integrating biotechnological tools to advance the conservation, sustainable production and pharmaceutical use of Calendula. These findings form the basis for future studies to improve the efficiency, standardization and industrial application of this medicinal plant.
Abdalla N, El-Ramady H, Seliem M, El-Mahrouk ME, Taha N, Bayoumi Y, Dobránszki J (2022) An academic and technical overview on plant micropropagation challenges. Horticulturae 8:677. https://doi.org/10.3390/horticulturae8080677
Abdel-Wahed GA (2020) Application of some fungicides alternatives for management root rot and wilt fungal diseases of marigold (Calendula officinalis L). Sci J Agric Sci 2:31–41
Alharbi NS, Alsubhi NS, Felimban AI (2022) Green synthesis of silver nanoparticles using medicinal plants: characterization and application. J Radiat Res Appl Sci 15:109–124. https://doi.org/10.1016/j.jrras.2022.06.012
Alsoufi AS, Staśkiewicz K, Markowski M (2021) Alterations in oleanolic acid and sterol content in Calendula officinalis hairy root cultures in response to stimulation by selected phytohormones. Acta Physiol Plant 43:98. https://doi.org/10.1007/s11738-021-03212-6
Amom T, Tikendra L, Apana N, Goutam M, Sonia P, Koijam AS, Nongdam P (2020) Efficiency of RAPD, ISSR, iPBS, scot and phytochemical markers in the genetic relationship study of five native and economically important bamboos of North-East India. Phytochemistry 174:112330. https://doi.org/10.1016/j.phytochem.2020.112330
Arjenaki FG, Dehaghi MA, Jabbari R, Arjenaki MA (2011) Effects of priming on seed germination of Calendula officinalis. Adv Environ Biol 5:276–280
Balciunaitiene A, Puzeryte V, Radenkovs V, Krasnova I, Memvanga PB, Viskelis P, Viskelis J (2022) Sustainable–green synthesis of silver nanoparticles using aqueous Hyssopus officinalis and Calendula officinalis extracts and their antioxidant and antibacterial activities. Molecules 27:7700. https://doi.org/10.3390/molecules27227700
Barbaś P, Sawicka B, Pszczółkowski P, Krochmal-Marczak B (2025) Application of biotechnological techniques in the breeding and sustainable production of marigold (Tagetes spp). Breeding of ornamental crops: annuals and cut flowers. Springer, pp 297–330. https://doi.org/10.1007/978-3-031-78653-2_9
Bashi BZK, Al-Noah KM (2018) Qualitative and quantitative determination of salicylic acid and resorcinol in callus of Calendula officinalis L. using HPLC technique. Rafidain J Sci 27:1–14. https://www.iasj.net/iasj/download/c0ebf37ddd4b090c
Boztaş G, Bayram E (2025) Effects of different seeding rates on growth performance, yield, and quality of Calendula officinalis L. in mediterranean conditions. Turkish J Field Crops 30:138–150. https://doi.org/10.17557/tjfc.1578727
Bravo-Ruiz IN, González-Arnao M, Castañeda-Castro O, Pastelín-Solano MC, Cruz-Cruz CA (2022) Use of thin cell layer (TCL) to obtain somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis. Methods Mol Biol, vol 2466. Humana, New York, NY, pp 183–201. https://doi.org/10.1007/978-1-0716-2485-2_14
Catalano C, Abbate L, Carimi F, Carra A, Gristina AS, Motisi A, Garfì G (2022) Propagation of Calendula maritima Guss. (Asteraceae) through biotechnological techniques for possible usage in phytotherapy. Agronomy 12:2788. https://doi.org/10.3390/agronomy12112788
Çetin B, Kurtuluş B, Bingöl NA (2015) Effects of plant growth regulators on callus formation in different explant of Calendula officinalis L. J Appl Biol Sci 9:34–39. https://dergipark.org.tr/en/pub/jabs/issue/34942/387631
Christenhusz MJM, Ruhsam M, Leitch IJ, Patron N (2025) The genome sequence of the common marigold, Calendula officinalis L. Wellcome Open Res 10:45. https://doi.org/10.12688/wellcomeopenres.23614.1
Çöçü S, Uranbey S, Ipek A, Khawar KM, Sarihan EO, Kaya MD, Özcan S (2004) Adventitious shoot regeneration and micropropagation in Calendula officinalis L. Biol Plant 48:449–451. https://doi.org/10.1023/B:BIOP.0000041102.79647.b6
Deuschle VCKN, Deuschle RAN, Piana M, Boligon AA, Bortoluzzi MRB, Dal Prá V, Athayde ML (2015) Phytochemical evaluation and in vitro antioxidant and photoprotective capacity of Calendula officinalis L. leaves. Rev Bras Plantas Med 17:693–701. https://doi.org/10.1590/1983-084X/14_055
Dhingra G, Dhakad P, Tanwar S (2022) Review on phytochemical constituents and pharmacological activities of plant Calendula officinalis Linn. Biol Sci 2:216–228. https://doi.org/10.55006/biolsciences.2022.2205
Długosz M, Markowski M, Pączkowski C (2018) Source of nitrogen as a factor limiting saponin production by hairy root and suspension cultures of Calendula officinalis L. Acta Physiol Plant 40:28. https://doi.org/10.1007/s11738-018-2610-2
Eberle CA, Forcella F, Gesch R, Peterson D, Eklund J (2014) Seed germination of Calendula in response to temperature. Ind Crops Prod 52:199–204. https://doi.org/10.1016/j.indcrop.2013.10.031
Farrokhzad Y, Babaei A, Yadollahi A, Kashkooli AB, Mokhtassi-Bidgoli A (2022) In vitro rooting, plant growth, monosaccharide profile and anatomical analysis of Phalaenopsis regenerants under different regions of visible light. S Afr J Bot 149:622–631. https://doi.org/10.1016/j.sajb.2022.06.039
Giancarla V, Madoşa E, Camen D, Ciulca A, Malaescu M, Beinsan C, Gabor C, Gorinoiu G (2018) The use of RAPD markers in assessing genetic diversity in Calendula officinalis. J Hortic Biotechnol 22:126–129. https://www.usab-tm.ro/Journal-HFB/2018/Volum%2022(4)%20PDF/23Velicevici%20Giancarla%20-2012.pdf
Khalid KA, Da Silva JT (2012) Biology of Calendula officinalis Linn.: focus on pharmacology, biological activities and agronomic practices. Med Aromat Plant Sci Biotechnol 6:12–27
Khouchlaa A, El Baaboua A, El Moudden H, Lakhdar F, Bakrim S, El Menyiy N, Bouyahya A (2023) Traditional uses, bioactive compounds, and pharmacological investigations of Calendula arvensis L.: a comprehensive review. Advances in pharmacological and Pharmaceutical Sciences 2023:2482544
Khpalwak W, Abdel-Dayem SM, Sakugawa H (2018) Individual and combined effects of fluoranthene, phenanthrene, mannitol and sulfuric acid on Calendula officinalis. Ecotoxicol Environ Saf 148:834–841. https://doi.org/10.1016/j.ecoenv.2017.11.065
Kouchebagh SB, Rasouli P, Babaiy AH, Khanlou AR (2015) Seed germination of pot Calendula officinalis L. as affected by physical priming techniques. Int J Biosci 6:49–54. https://doi.org/10.12692/ijb/6.5.49-54
Olfati A, Kahrizi D, Balaky STJ, Sharifi R, Tahir MB, Darvishi E (2021) Green synthesis of nanoparticles using Calendula officinalis extract from silver sulfate and their antibacterial effects on pectobacterium caratovorum. Inorg Chem Commun 125:108439. https://doi.org/10.1016/j.inoche.2020.108439
Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Cheng Y (2021) Linking plant secondary metabolites and plant microbiomes: a review. Front Plant Sci 12:621276. https://doi.org/10.3389/fpls.2021.621276
Peshkova A, Zinicovscaia I, Cepoi L, Rudi L, Chiriac T, Yushin N, Corcimaru S (2025) Uptake of gold, silver, and copper nanoparticles by Calendula officinalis L. and their effect on the plant biochemical parameters. Eur Phys J Special Top 1–12. https://doi.org/10.1140/epjs/s11734-025-01534-x
Porghahreman F, Torabi Giglou M, Farhadpour M, Ghorbani A, Hajieghrari B, Sallom A (2025) Genomic and cytogenetic analysis of Calendula officinalis L.: insights into metabolite pathways and ploidy. Sci Hort 350:114249. https://doi.org/10.1016/j.scienta.2025.114249
Rigane G, Ben Younes S, Ghazghazi H, Ben Salem R (2013) Investigation into the biological activities and chemical composition of Calendula officinalis L. growing in Tunisia. Int Food Res J 20(6):3001–3007
Salmon M, Golubova D, Su H, Tansley C, Linsmith G, Kaithakottil G, Schudoma C, Swarbreck D, O’Connell MO, Patron N (2024) Calendula officinalis whole genome shotgun sequencing project. GenBank: CAXWYG000000000.1. Direct submission, Earlham Institute, Norwich, UK. https://www.ncbi.nlm.nih.gov/nuccore/CAXWYG000000000.1
Samatadze TE, Yurkevich OY, Khazieva FM, Basalaeva IV, Savchenko OM, Zoshchuk SA, Morozov AI, Amosova AV, Muravenko OV (2023) Genome studies in four species of Calendula L. (Asteraceae) using satellite DNAs as chromosome markers. Plants 12:4056. https://doi.org/10.3390/plants12234056
Shahane K, Kshirsagar M, Tambe S, Jain D, Rout S, Ferreira MKM, Lima RR (2023) An updated review on the multifaceted therapeutic potential of Calendula officinalis L. Pharmaceuticals 16:611
Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M (2021) Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater 4(11):11428–11457. https://doi.org/10.1021/acsanm.1c02946
Tigrel A, Arslan M, Arıcı B, Yücesan B (2022) Selection and preparation of explants for the clonal propagation of horticultural plants in plant factory systems. In: commercial scale tissue culture for horticulture and plantation crops (pp. 23–48). Springer. Berlinhttps://doi.org/10.1007/978-981-19-0055-6_2
Torbaghan ME (2012) Effect of salt stress on germination and some growth parameters of Calendula officinalis L. Plant Sci J 1(1):7–19
Vella FM, Pignone D, Laratta B (2024) The mediterranean species Calendula officinalis and Foeniculum vulgare as valuable source of bioactive compounds. Molecules 29:3594. https://doi.org/10.3390/molecules29153594
Victório CP, Lage CLS, Sato A (2012) Tissue culture techniques in the proliferation of shoots and roots of Calendula officinalis. Rev Ciênc Agron 43(3):539–545. https://doi.org/10.1590/S1806-66902012000300017
Yang L, Yang Y, Huang L, Cui X, Liu Y (2023) From single- to multi-omics: future research trends in medicinal plants. Brief Bioinform 24(1):bbac485. https://doi.org/10.1093/bib/bbac485
Yassein A, Hassan A, Abdel-Alah E, Salim S (2021) Morphological and genetic diversity analysis in Calendula officinalis L. influenced by mutagenic effect of Colchicine. J Microbiol Biotechnol Food Sci 10(5):e3392. https://doi.org/10.15414/jmbfs.3392
Zhang N, Huang K, Xie P, Deng A, Tang X, Jiang M, Mo P, Yin H, Huang R, Liang J, He F, Liu Y, Hu H, Wang Y (2024) Chloroplast genome analysis and evolutionary insights in the versatile medicinal plant Calendula officinalis L. Sci Rep 14:9662. https://doi.org/10.1038/s41598-024-60455-2
Tavallali V, Alhavi N, Gholami H, Abarghuei FM (2022) Developmental and phytochemical changes in pot marigold (Calendula officinalis L.) using exogenous application of polyamines. Plant Physiol Biochem 183:128–137 https://doi.org/10.1016/j.plaphy.2022.05.011
Baciu AD, Pamfil D, Mihalte L, Sestras AF, Sestras RE (2013) Phenotypic variation and genetic diversity of Calendula officinalis (L). Bulgarian J Agric Sci 19(1):143–151
Zagorcheva T, Rusanova M, Rusanov K, Atanassov I (2022) Genetic diversity assessment of Calendula officinalis wilding plants locally grown in Bulgaria, using SRAP markers. C R Acad Bulg Sci 75(9):1303–1309 https://doi.org/10.7546/CRABS.2022.09.07
Santos AP, Gonçalves MM, Justus B, Fardin DP, Toledo AC, Budel JM, Paula JP (2022) Calendula officinalis L. flower extract-mediated green synthesis of silver nanoparticles under LED light. Braz J Pharm Sci 58:e19519. https://doi.org/10.1590/s2175-97902022e19519
Bertoni BW, Damião Filho CF, Moro JR, França SC, Pereira A (2006) Micropropagação de Calendula officinalis L. Rev Bras Plantas Med 8:48–54. https://repositorio.unesp.br/handle/11449/68777
Gadzovska S, Pavlova V, Nasteska M, Neskoska A, Spasenoski M (2007) Secondary metabolite production in in vitro shoots of Calendula officinalis L. In: Proceedings of the III Congress of Ecologists of Macedonia, Struga, Macedonia, pp 06-09. http://www.mes.org.mk/PDFs/3rd%20Congress%20Proceedings/08_Sonja%20Gadzovska%20et%20al_2.pdf
Leal F, Rodrigues A, Fernandes D, Nunes FM, Cipriano J, Ramos J, Pinto-Carnide O (2007) In vitro multiplication of Calendula arvensis for secondary metabolites extraction. In III International Symposium on Acclimatization and Establishment of Micropropagated Plants 812: 251–256. https://doi.org/10.17660/ActaHortic.2009.812.33
Vantu S (2015) In vitro multiplication of Calendula officinalis L. Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi, Sectiunea IIa. Genetica si Biol Moleculara 16(3):113–120. http://www.jemb.bio.uaic.ro/old_pdfs/2015/3/03_Anale_GBM_F3_2015.pdf
Alexa IC, Paval P, Nicuta D, Bran P, Patriciu OI, Grosu L, Finaru AL (2015) Effects of hormones addition for in vitro plant development of Calendula officinalis. Sci Stud Res Chem Chem Eng Biotechnol Food Ind 16(1):75. https://pubs.ub.ro/dwnl.php?id=CSCC6201501V01S01A0008
Emilia P, Camen DD (2021) Effect of different growth regulator treatments on germination in Calendula officinalis L. J Hortic Forestry Biotechnol 25(1):80–83. https://www.usab-tm.ro/Journal-FB/2021/JHFB_2021_Vol_I/14Popovici_Emilia%20Camen_D%20Scientific_Paper_2.pdf
Hashim S, Jan A, Marwat KB, Khan MA (2014) Phytochemistry and medicinal properties of Ammi visnaga (Apiaceae). Pak J Bot 46(3):861–867
Çetin B, Kalyoncu F, Kurtuluş B (2017) Antibacterial activities of Calendula officinalis callus extract. Int J Second Metabolite 4(3, Special Issue 1):257–263. https://doi.org/10.21448/ijsm.372108
Al-Abasi IN, Bashi BZ, Al-Mallah MK (2018) Design of culture medium and leaf clones are determinant factors in callus induction of Calendula officinalis L. Eur Acad Res 6:1901–1913
Nishitani S, Ijichi C, Takehana K, Fujitani S, Sonaka I (2004) Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun 313(2):387–389. https://doi.org/10.1016/j.bbrc.2003.11.023
Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324. https://doi.org/10.1111/bph.13625
Tiwari KV, Mishra RC, Sharma A, Tripathi RP (2012) Carbohydrate based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini Reviews in Medicinal Chemistry 12(14): 1497–1519. https://doi.org/10.2174/138955712803832654
Hoult JR, Payá M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacology: Vascular Syst 27(4):713–722. https://doi.org/10.1016/0306-3623
Agrawal AD (2011) Pharmacological activities of flavonoids: a review. Int J Pharm Sci Nanotechnol 4:1394–1398. https://doi.org/10.37285/ijpsn.2011.4.2.3
Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI, Badal S, Delgoda R (2017) Terpenoids. Pharmacognosy. Academic, Boston, pp 233–266. https://doi.org/10.1016/B978-0-12-802104-0.00011-1
Gunes AK, Zengin G, Ceylan R, Mahomoodally MF, Jugreet S, Mollica A, Stefanucci A (2021) Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr J 36(5):554–563. https://doi.org/10.1002/ffj.3661
Instituto de Biotecnología de las Plantas, Universidad Central ‘Marta Abreu’ de Las Villas, Santa Clara, Cuba