*Article not assigned to an issue yet
Keywords:
Species Distribution Model (SDM), MaxEnt, Invasive alien species (IAS), Habitat vulnerability index (HVI), RCP 2.6, RCP 8.5
Climate change and Land Use Land Cover (LULC) change may promote plant invasion, making the study of their impact on invasive alien species (IAS) crucial for environmental conservation. In this study, the invasive alien plant Chromolaena odorata was selected as the study species. The MaxEnt algorithm was employed to facilitate the Species Distribution Model (SDM) of C. odorata under current and future climate scenarios. Two emission scenarios of representative concentration pathways (RCP 2.6 and RCP 8.5) were considered for future climate conditions. The results showed good predictions from the MaxEnt model across the current scenario (area under the ROC curve (AUC) = 0.805), and future scenarios (AUC = 0.802 for RCP 2.6 and AUC = 0.807 for RCP 8.5). True Skill Statistics (TSS) scores indicated fair predictive performance with scores of 0.523 for current, 0.516 for RCP 2.6, and 0.501 for RCP 8.5. LULC affects the distribution of C. odorata in the Province of La Union, with ‘distance to built areas’ and ‘shrubland’ identified as the most important factors in shaping its potential distribution. Predictive results revealed a massive expansion of 23,279 ha of C. odorata under the RCP 2.6 scenario, and 29,106 ha under the RCP 8.5 scenario. The model results provide evidence of plant invasion and identify vulnerable habitats to C. odorata, supporting the development of evidence-based policies to prevent its spread. This study is the first to report the SDM of C. odorata influenced by LULC change and climate change in the province and across the Philippines.
(*Only SPR Life Members can get full access.)
Adhikari P, Lee YH, Poudel A, Hong SH, Park YS (2023) Global spatial distribution of Chromolaena odorata habitat under climate change: random forest modeling of one of the 100 worst invasive alien species. Sci Rep 13(1):9745. https://doi.org/10.1038/s41598-023-36358-z
Aerts R, Ewald M, Nicolas M, Piat J, Skowronek S, Lenoir J, Hattab T, Garzón-López CX, Feilhauer H, Schmidtlein S, Rocchini D, Decocq G, Somers B, Van De Kerchove R, Denef K, Honnay O (2017) Invasion by the alien tree prunus serotina alters ecosystem functions in a temperate deciduous forest. Front Plant Sci 8:179. https://doi.org/10.3389/fpls.2017.00179
Agboola OO, Muoghalu JI (2015) Changes in species diversity, composition, growth and reproductive parameters of native vegetation invaded by Chromolaena odorata and Tithonia diversifolia in Osun State, southwest Nigeria. FUTA J Res Sci 11(2):217–230
Ahmed K, Sachindra DA, Shahid S, Iqbal Z, Nawaz N, Khan N (2020) Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos Res 236:104806. https://doi.org/10.1016/j.atmosres.2019.104806
Akaffou S, Abrou N, Tiébré M (2020) Current and future distribution of Chromolaena odorata (L.) R.M. King & H. Roxb (Compositae) and Hopea odorata Roxb (Dipterocarpaceae) in the Banco national park. IOSR J Pharm Biol Sci 15(2):6–14. https://doi.org/10.9790/3008-1502030614
Akin-Fajiye M, Akomolafe GF (2021) Disturbance is an important predictor of the distribution of Lantana camara and Chromolaena odorata in Africa. Vegetos 34(1):42–49. https://doi.org/10.1007/s42535-020-00179-6
Akomolafe GF, Rahmad ZB (2020) Wetlands invaded by Pneumatopteris afra (Christ.) Holttum are less diverse and more threatened than non-invaded ones in Nigeria. Songklanakarin J Sci Technol 42(4):858–864. https://doi.org/10.14456/sjst-psu.2020.110
Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Almadrones-Reyes KJ, Dagamac NHA (2018) Predicting local habitat suitability in changing climate scenarios: applying species distribution modelling for Diderma hemisphaericum. Curr Res Environ Appl Mycol 8(5):492–500
Almarinez BJM, Amalin DM, Carandang JSR, Navasero MV, Navasero MM (2015) First Philippine record of the parasitoid, Comperiella sp. (Hymenoptera: Encyrtidae): a potential biocontrol agent against Aspidiotus rigidus (Hemiptera: Diaspididae). J Appl Entomol 139(3):237–240. https://doi.org/10.1111/jen.12173
Almarinez BJM, Barrion AT, Navasero MV, Navasero MM, Cayabyab BF, Carandang JSR, Legaspi JC, Watanabe K, Amalin DM (2020) Biological control: a major component of the pest management program for the invasive coconut scale insect, Aspidiotus rigidus Reyne, in the Philippines. InSects 11(11):745. https://doi.org/10.3390/insects11110745
Amoroso VB, Arances JB, Gorne ND, Ruba RP, Comilap RB, Montimar, LV et al (2006) Participatory inventory and assessment of plants in Malindang Range Natual Park, Mindano Island, Philippines. In: Society, environment, and development: the Mt. Malindang experience, p 77
Balangcod KD, Balangcod AKD (2020) Chromolaena odorata (L.) R.M. King & H. Rob Asteraceae. In: Franco FM (ed) Ethnobotany of the mountain regions of southeast Asia. Springer, Berlin, pp 1–7
Balaoro-Banzuela RC, Ocenar-Bautista CE, Buebos-Esteve DE, Claudio-Paragas CY, Limbo-Dizon JE, Dagamac NHA (2023) Rapid diversity assessment of litter myxomycete as-semblages in the upland and coastal terrains of San Fernando City, La Union, Philippines. Biodiversitas 24(5):2877
Ballada KA, Buot IE Jr (2023) A survey of weeds along a tributary of the chico river system in Suyo, Ilocos Sur, Northern Luzon, Philippines. J Wetl Biodiver 13:83–113
Bektas V, Bettinger P, Nibbelink N, Siry J, Merry K, Henn KA, Stober J (2022) Habitat suitability modeling of rare turkeybeard (Xerophyllum asphodeloides) species in the Talladega National Forest, Alabama, USA. Forests 13(4):490. https://doi.org/10.3390/f13040490
Berba CMP, Matias AMA (2022) State of biodiversity documentation in the Philippines: metadata gaps, taxonomic biases, and spatial biases in the DNA barcode data of animal and plant taxa in the context of species occurrence data. PeerJ 10:e13146. https://doi.org/10.7717/peerj.13146
Bowen AKM, Stevens MHH (2020) Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass. Ecol Evol 10(19):10785–10797. https://doi.org/10.1002/ece3.6735
Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700. https://doi.org/10.1111/2041-210X.12200
Buebos-Esteve DE, Mamasig GDNS, Ringor AMD, Layog HNB, Murillo LCS, Dagamac NHA (2023) Modeling the potential distribution of two immortality flora in the Philippines: applying MaxEnt and GARP algorithms under different climate change scenarios. Model Earth Syst Environ 9(2):2857–2876. https://doi.org/10.1007/s40808-022-01661-7
Chauvier Y, Descombes P, Guéguen M, Boulangeat L, Thuiller W, Zimmermann NE (2022) Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography 2022(10):e05973. https://doi.org/10.1111/ecog.05973
Codilla LT, Metillo EB (2011) Distribution and abundance of the invasive plant species Chromolaena odorata L. in the Zamboanga Peninsula, Philippines. Int J Environ Sci Dev 2(5):406
Codilla L, Metillo E (2012) Biotype of the invasive plant species Chromolaena odorata (Asteraceae: Eupatoriae) in the Zamboanga Peninsula, the Philippines. Philipp J Syst Biol VI:28–42
Combalicer M, Carayugan MB, Hernandez J (2019) Allelopathic property of an invasive tree Broussonetia papyrifera (L.) LHer. ex vent in its introduced range in mount makiling forest reserve, Philippines. Philipp J Sci 148:609–618
Comia-Geneta G, Reyes-Haygood SJ, Salazar-Golez NL, Seladis-Ocampo NA, Samuel-Sualibios MR, Dagamac NHA, Buebos-Esteve DE (2024) Development of a novel optimization modeling pipeline for range prediction of vectors with limited occurrence records in the Philippines: a bipartite approach. Model Earth Syst Environ 10(3):3995–4011. https://doi.org/10.1007/s40808-024-02005-3
Cortez GNG, Ordas JAD, Zamudio SGS, Caguioa CDD, Rodriguez MAA, Rubite RR et al (2023) The mangal flora diversity of Del Carmen Forest on Siargao Island, Philippines. Check List 19(6):983–1011. https://doi.org/10.15560/19.6.983
Cuthbert RN, Diagne C, Hudgins EJ, Turbelin A, Ahmed DA, Albert C et al (2022) Biological invasion costs reveal insufficient proactive management worldwide. Sci Total Environ 819:153404. https://doi.org/10.1016/j.scitotenv.2022.153404
Dagamac NHA, Bauer B, Woyzichovski J, Shchepin ON, Novozhilov YK, Schnittler M (2021) Where do nivicolous myxomycetes occur? Modeling the potential worldwide distribution of Physarum albescens. Fungal Ecol 53:101079
Dandjlessa J, Ezin B, Zossou N, Ahanchede A (2022) Mapping actual distribution of invasive species siam weed and its abundance across biogeographical zones in Benin (West Africa). Adv Weed Sci 39:e20210081
Das D, Banerjee S, John R (2019) Predicting the distribution and abundance of invasive plant species in a sub-tropical woodland-grassland ecosystem in northeastern India. Plant Ecol 220(10):935–950. https://doi.org/10.1007/s11258-019-00964-7
Dawson W, Burslem DFRP, Hulme PE (2015) Consistent effects of disturbance and forest edges on the invasion of a continental rain forest by alien plants. Biotropica 47(1):27–37. https://doi.org/10.1111/btp.12183
Deng X, Xu D, Liao W, Wang R, Zhuo Z (2022) Predicting the distributions of Scleroderma guani (Hymenoptera: Bethylidae) under climate change in China. Ecol Evol 12(10):e9410. https://doi.org/10.1002/ece3.9410
DENR-BMB (2022) Philippine biodiversity statistics. Retrieved from https://bmb.gov.ph/protected-area-development-and-management/philippine-protected-areas/facts-figures-protected-areas/
Diesmos AC, Diesmos ML, Brown RM (2006) Status and distribution of alien invasive frogs in the Philippines. J Environ Sci Manag 9(2):41–53
Dumalisile L (2008) Effects of Chromolaena odorata on mammalian biodiversity in Hluhluwe-iMfolozi Park, South Africa. University of Pretoria. https://repository.up.ac.za/handle/2263/26178
Dumdumaya CE, Cabrera JS (2023) Determination of future land use changes using remote sensing imagery and artificial neural network algorithm: a case study of Davao City, Philippines. Artif Intell Geosci 4:111–118. https://doi.org/10.1016/j.aiig.2023.08.002
Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32(1):66–77
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697
Fikrinda F, Akhmad N, Ikhsan WM (2021) Effectiveness of Chromolaena odorata as organic manure in promoting plant nutrient uptake and soil nutrient status on mustard rhizosphere. IOP Conf Ser Earth Environ Sci 807(4):042020. https://doi.org/10.1088/1755-1315/807/4/042020
Fischer G, Nachtergaele F, Prieler S, Van Velthuizen H, Verelst L, Wiberg D (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy, p 10
Florece L, Coladilla J (2008) Spatial distribution and dominance of paper mulberry (Broussonetia papyrifera) in the vicinities of Mt. Makiling, Philippines. J Environ Sci Manag 9:54–65
Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Cons 141(3):646–654. https://doi.org/10.1016/j.biocon.2007.12.009
Gordon H, Rotstayn L, McGregor J, Dix M, Kowalczyk E, O’farrell S, Waterman L, Hirst A, Wilson S, Collier M (2002) The CSIRO Mk3 climate system model. In: CSIRO atmospheric research technical paper, Victoria
Haerani H, Apan A, Nguyen-Huy T, Basnet B (2023) Modelling future spatial distribution of peanut crops in Australia under climate change scenarios. Geo-Spat Inf Sci. https://doi.org/10.1080/10095020.2022.2155255
Hao T, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2020) Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43(4):549–558. https://doi.org/10.1111/ecog.04890
Hernandez J, Umali AG, Malabrigo P (2021) Floristic diversity assessment of Caramoan National Park, Camarines SurPhilippines. Ecosyst Dev J 11(1 and 2):73–81
Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401):105–108. https://doi.org/10.1038/nature11118
Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46(1):10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis report. Contribution of working groups, I, II and III to the fifth assessment report of the intergovernmental panel on climate change. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
Julio A, Tandoc WC, Tipace HD, Vendivil YF, Yanesa Z, Tare MVR et al (2019) Allelopathic effect of Lantana camara and Chromolaena odorata leaf extracts on plant germination. Asian J Agric Biol 7(2):190–196
Kaky E, Nolan V, Alatawi A, Gilbert F (2020) A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants. Eco Inform 60:101150. https://doi.org/10.1016/j.ecoinf.2020.101150
Karger N, Conrad D, Conrad O, Böhner J, Kawohl T, Kreft H, Wilber Soria-Auza R, Zimmermann N, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122
Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9(4):1151–1156. https://doi.org/10.1111/2041-210X.12945
Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021) ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol 12(9):1602–1608. https://doi.org/10.1111/2041-210X.13628
Kassi SPA, Koné AW, Tondoh JE, Koffi BY (2017) Chromoleana odorata fallow-cropping cycles maintain soil carbon stocks and yam yields 40 years after conversion of native-to farmland, implications for forest conservation. Agr Ecosyst Environ 247:298–307. https://doi.org/10.1016/j.agee.2017.06.044
Kato-Noguchi H, Kato M (2023) Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 12(3):521. https://doi.org/10.3390/plants12030521
Kim E, Choi J, Song W (2021) Introduction and spread of the invasive alien species Ageratina altissima in a disturbed forest ecosystem. Sustainability 13(11):6152. https://doi.org/10.3390/su13116152
Kishore BSPC, Kumar A, Saikia P (2024) Understanding the invasion potential of Chromolaena odorata and Lantana camara in the Western Ghats, India: an ecological niche modelling approach under current and future climatic scenarios. Eco Inform 79:102425. https://doi.org/10.1016/j.ecoinf.2023.102425
Kong WY, Li XH, Zou HF (2019) Optimizing MaxEnt model in the prediction of species distribution. J Appl Ecol 30(6):2116–2128. https://doi.org/10.13287/j.1001-9332.201906.029
Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21:1251–1266. https://doi.org/10.1007/s10531-012-0279-1
Layek U, Das A, Das U (2022) Floral biology, floral volatile organic compounds and floral visitors of Chromolaena odorata, an invasive alien species in West Bengal, India. Biodivers J Biol Divers 23(4):2118–2129. https://doi.org/10.13057/biodiv/d230447
Lazzaro L, Giuliani C, Fabiani A, Agnelli AE, Pastorelli R, Lagomarsino A, Benesperi R, Calamassi R, Foggi B (2014) Soil and plant changing after invasion: the case of Acacia dealbata in a mediterranean ecosystem. Sci Total Environ 497–498:491–498. https://doi.org/10.1016/j.scitotenv.2014.08.014
Lembrechts JJ, Alexander JM, Cavieres LA, Haider S, Lenoir J, Kueffer C, McDougall K, Naylor BJ, Nunez MA, Pauchard A, Rew LJ, Nijs I, Milbau A (2016) Mountain roads shift native and non-native plant species’ ranges. Ecography 40:353–364. https://doi.org/10.1111/ecog.02200
Leslie AJ, Spotila JR (2001) Alien plant threatens Nile crocodile (Crocodylus niloticus) breeding in Lake St. Lucia, South Africa. Biol Conserv 98(3):347–355. https://doi.org/10.1016/S0006-3207(00)00177-4
Li YP, Li WT, Niu YF, Feng YL (2024) Variation in root traits and phenotypic plasticity between native and introduced populations of the invasive plant Chromolaena odorata. NeoBiota 92:45–60. https://doi.org/10.3897/neobiota.92.110985
Limbo-Dizon JE, Almadrones-Reyes KJ, Macabago SAB, Dagamac NHA (2022) Bioclimatic modeling for the prediction of the suitable regional geographical distribution of selected bright-spored myxomycetes in the Philippine archipelago. Biodivers J Biol Divers 23(5):2285
Linders TEW, Schaffner U, Eschen R, Abebe A, Choge SK, Nigatu L, Mbaabu PR, Shiferaw H, Allan E (2019) Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J Ecol 107(6):2660–2672. https://doi.org/10.1111/1365-2745.13268
Llave DS, De Guzman RB, Perdio AC, Corpuz MNC (2018) Rapid biodiversity assessment in the buffer zone of Bataan National Park, Luzon Island, Philippines. J Biodivers Environ Sci 13(2):336–345
Lourenço P, Teodoro AC, Gonçalves JA, Honrado JP, Cunha M, Sillero N (2021) Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data. Int J Appl Earth Obs Geoinf 95:102263. https://doi.org/10.1016/j.jag.2020.102263
Magpantay AT, Sanchez PAJ, Sobremisana MJ, Tiburan CL (2019) Land use and land cover (LULC) change impact assessment on surface runoff responses of Santa Cruz Watershed, Philippines. Internet J Soc Soc Manag Syst 12(1):19–2611
Manzoor SA, Griffiths G, Lukac M (2021) Land use and climate change interaction triggers contrasting trajectories of biological invasion. Ecol Ind 120:106936. https://doi.org/10.1016/j.ecolind.2020.106936
Masemola C, Cho MA, Ramoelo A (2020) Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu Natal, South Africa. Int J Appl Earth Obs Geoinf 93:102207. https://doi.org/10.1016/j.jag.2020.102207
McFadyen REC (1991) The ecology of Chromolaena odorata in the Neotropics. In: Proceedings of the second international workshop on biological control of Chromolaena odorata, no. 40, pp 1–9
Medecilo MMP, Lagat MN (2017) Floristic composition of the remaining forests in Upland Cavite, Luzon Island, Philippines. Philipp J Syst Biol 11(1):74–94
Meinshausen M, Nicholls ZR, Lewis J, Gidden MJ, Vogel E, Freund M et al (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13(8):3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Mendoza LA, Lagbas AJ, Buot IE Jr (2016) Conservation status of the plant species in selected areas with frequent human activities in roosevelt protected landscape, Bataan, Luzon Island, Philippines. Thail Nat Hist Mus J 10(2):79–115
Mosher ES, Silander JA, Latimer AM (2009) The role of land-use history in major invasions by woody plant species in the northeastern North American landscape. Biol Invasions 11:2317–2328. https://doi.org/10.1007/s10530-008-9418-8
Naidoo G, Naidoo KK (2018) Drought stress effects on gas exchange and water relations of the invasive weed Chromolaena odorata. Flora 248:1–9. https://doi.org/10.1016/j.flora.2018.08.008
Nath A, Sinha A, Lahkar BP, Brahma N (2019) In search of Aliens: factors influencing the distribution of Chromolaena odorata L. and Mikania micrantha Kunth in the Terai grasslands of Manas National Park, India. Ecol Eng 131:16–26. https://doi.org/10.1016/j.ecoleng.2019.02.012
Nirmala L, Reghu RJ, Santhosh RS, Sugathan S, Chithra AAK, Sophy AJK (2022) Plant invasion by Chromolaena odorata alters the soil microbiome and provides insight into the role of copiotrophs. Ecol Genet Genom 26:100157. https://doi.org/10.1016/j.egg.2022.100157
Obemio CDG, Tumamac MC, Gubalane RB, Labrador CMF, Remollo LL, Roxas PG et al (2016) Composition and diversity of floral understory in Mount Matutum Protected Landscape (MMPL), South Cotabato, Philippines. Adv Environ Sci 8(2):165–172
Paclibar GCB, Tadiosa ER (2019) Ecological niche modeling of invasive alien plant species in a protected landscape. Glob J Environ Sci Manag 5(3):371–382. https://doi.org/10.22034/GJESM.2019.03.09
Paclibar GCB, Tadiosa ER (2020) Plant species diversity and assessment in Quezon Protected Landscape, Southern Luzon, Philippines. Philipp J Syst Biol 14(3):1–19
Parmesan C, Duarte C, Poloczanska E, Richardson AJ, Singer MC (2011) Overstretching attribution. Nature. Clim Change 1(1):2–4. https://doi.org/10.1038/nclimate1056
Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504. https://doi.org/10.1016/j.tree.2009.03.016
Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning, Banff, Alberta, Canada. https://doi.org/10.1145/1015330.1015412
Phiri D, Morgenroth J, Xu C, Hermosilla T (2018) Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. Int J Appl Earth Obs Geoinf 73:170–178. https://doi.org/10.1016/j.jag.2018.06.014
Posa MRC, Diesmos AC, Sodhi NS, Brooks TM (2008) Hope for threatened tropical biodiversity: lessons from the Philippines. Bioscience 58(3):231–240. https://doi.org/10.1641/b580309
Prasad N, Das T, Adhikari D (2019) Impacts of anthropogenic land use/land cover on the distribution of invasive aquatic macrophytes in tropical floodplains: a case study from the Barak River Basin in Northeast India. Hum Ecol 47:245–262. https://doi.org/10.1007/s10745-019-0067-6
Pratt CF, Constantine KL, Murphy ST (2017) Economic impacts of invasive alien species on African smallholder livelihoods. Glob Food Sec 14:31–37. https://doi.org/10.1016/j.gfs.2017.01.011
Preau C, Trochet A, Bertrand R, Isselin-Nondereu F (2018) Modeling potential distributions of three European amphibian species comparing ENFA and Maxent. Herpetol Conserv Biol 13(1):91–104
Rai PK, Singh JS (2020) Invasive alien plant species: their impact on environment, ecosystem services and human health. Ecol Ind 111:106020. https://doi.org/10.1016/j.ecolind.2019.106020
Rajendran GB, Kumarasamy UM, Zarro C, Divakarachari PB, Ullo SL (2020) Land-use and land-cover classification using a human group-based particle swarm optimization algorithm with an LSTM classifier on hybrid pre-processing remote-sensing images. Remote Sensing 12(24):4135. https://doi.org/10.3390/rs12244135
Ramachandran RM, Roy PS, Chakravarthi V, Joshi PK, Sanjay J (2020) Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: a simulation study. Environ Monit Assess 192(2):86. https://doi.org/10.1007/S10661-019-8044-5
Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants: state of the art. In: Scope-scientific committee on problems of the environment international council of scientific unions 63, p 104
Rickart EA, Balete DS, Rowe RJ, Heaney LR (2011) Mammals of the northern Philippines: tolerance for habitat disturbance and resistance to invasive species in an endemic insular fauna. Divers Distrib 17(3):530–541. https://doi.org/10.1111/j.1472-4642.2011.00758.x
Rosialda PB, Quibod MNR, Day M (2019) Preliminary study on the distribution of the introduced gall-forming fly, Cecidochares connexa (Macquart) (Diptera: Tephritidae) for the biological control of the invasive alien weed Chromolaena odorata (L.) R.M. King & H. Rob (Asteraceae) in the Philippines. Philippine Journal of Science 148(1):189–196
Rusk J, Maharjan A, Tiwari P, Chen T-HK, Shneiderman S, Turin M, Seto KC (2022) Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Sci Total Environ 804:150039. https://doi.org/10.1016/j.scitotenv.2021.150039
Sage RF (2020) Global change biology: a primer. Glob Change Biol 26(1):3–30. https://doi.org/10.1111/gcb.14893
Salvaña FRP, Sepelagio EG, Sanchez CB, Cardenas LB (2021) A survey of forage-related toxicities in goats in Region XII, Philippines. J Livest Sci 12:170–175. https://doi.org/10.33259/JLivestSci.2021.170-175
Santillan JR, Gagula AC, Makinano-Santillan M (2021) Using MaxEnt in finding suitable location for establishing Falcata tree plantations in Caraga Region, Mindanao, Philippines. In: The 42nd Asian conference on remote sensing (ACRS 2021), Can Tho University, Can Tho City, Vietnam
Saranya KRL, Lakshmi TV, Reddy CS (2021) Predicting the potential sites of Chromolaena odorata and Lantana camara in forest landscape of Eastern Ghats using habitat suitability models. Eco Inform 66:101455. https://doi.org/10.1016/j.ecoinf.2021.101455
Shackleton RT, Le Maitre DC, Van Wilgen BW, Richardson DM (2015) The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. S Afr J Bot 97:25–31. https://doi.org/10.1016/j.sajb.2014.12.008
Sharma J, Singh R, Garai S, Rahaman SM, Khatun M, Ranjan A et al (2022a) Climate change and dispersion dynamics of the invasive plant species Chromolaena odorata and Lantana camara in parts of the central and eastern India. Eco Inform 72:101824. https://doi.org/10.1016/j.ecoinf.2022.101824
Sharma LN, Adhikari B, Watson MF, Shrestha BB, Paudel E, Karna B, Rijal DP (2022b) Forest canopy resists plant invasions: a case study of Chromolaena odorata in Sal (Shorea robusta) forests of Nepal. J Trop Ecol 38(2):49–57. https://doi.org/10.1017/S0266467421000456
Silva LD, Elias RB, Silva L (2021) Modelling invasive alien plant distribution: a literature review of concepts and bibliometric analysis. Environ Model Softw 145:105203. https://doi.org/10.1016/j.envsoft.2021.105203
Sirisena TAJG, Maskey S, Bamunawala J, Ranasinghe R (2021) Climate change and reservoir impacts on twentyfirst-century streamflow and fluvial sediment loads in the Irrawaddy River, Myanmar. Front Earth Sci 9:644527. https://doi.org/10.3389/feart.2021.644527
Steffen W (2010) Observed trends in earth system behavior. Wiley Interdiscip Rev Clim Change 1(3):428–449. https://doi.org/10.1002/wcc.36
Sutomo S, van Etten E (2017) Species distribution model of invasive alien species Acacia nilotica for Central-Eastern Indonesia using biodiversity climate change virtual laboratory (BCCVL). Trop Drylands 1:36–42. https://doi.org/10.13057/tropdrylands/t010106
Sutomo S, Yulia E, Iryadi R (2021) Kirinyuh (Chromolaena odorata): species distribution modeling and the potential use of fungal pathogens for its eradication. IOP Conf Ser Earth Environ Sci 762(1):012023. https://doi.org/10.1088/1755-1315/762/1/012023
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293
te Beest M, Elschot K, Olff H, Etienne RS (2013) Invasion success in a marginal habitat: an experimental test of competitive ability and drought tolerance in Chromolaena odorata. PLoS ONE 8(8):e68274. https://doi.org/10.1371/journal.pone.0068274
Thapa LB, Kaewchumnong K, Sinkkonen A, Sridith K (2016) Impacts of invasive Chromolaena odorata on species richness, composition and seedling recruitment of Shorea robusta in a tropical Sal forest, Nepal. Songklanakarin J Sci Technol 38(6):683–689. https://doi.org/10.14456/sjst-psu.2016.86
Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB (2018) Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS ONE 13(4):e0195752
Thiney U, Banterng P, Gonkhamdee S, Katawatin R (2019) Distributions of alien invasive weeds under climate change scenarios in Mountainous Bhutan. Agronomy 9(8):442. https://doi.org/10.3390/agronomy9080442
Tiebre M-S, Gnanazan ZRG (2018) Impact of Chromolaena odorata (L) R.M. King and H. Rob (Asteraceae) on the floristic composition and the physico-chemical properties of the soil of a coastal relict forest. Int J Innov Appl Stud 24(2):773–788
Torres A, Pulhin F, Lasco R, Tiburan C Jr, Eslava D (2016) Modeling future spatial distribution of Shorea palosapis (Blanco) Merr and Shorea polysperma (Blanco) Merr in Northern Sierra Madre natural park using Maxent. J Environ Sci Manag 2016(1):15–30. https://doi.org/10.47125/jesam/2016_sp1/02
Ullah S, You Q, Zhang Y, Bhatti AS, Ullah W, Hagan DFT et al (2020) Evaluation of CMIP5 models and projected changes in temperatures over South Asia under global warming of 1.5 °C, 2 °C, and 3 °C. Atmos Res 246:105122. https://doi.org/10.1016/j.atmosres.2020.105122
Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J (2022) Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol Monogr 92(1):e01486. https://doi.org/10.1002/ecm.1486
Vallejo BM, Aloy AB, Ocampo M, Conejar-Espedido J, Manubag LM (2019) Manila bay ecology and associated invasive species. In: Makowski C, Finkl CW (eds) Impacts of invasive species on coastal environments: coasts in crisis. Springer, Berlin, pp 145–169
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14(7):702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
Villegas KL, Pollisco FA Jr (2008) Floral survey of Laiban sub-watershed in the Sierra Madre Mountain Range in the Philippines. J Trop Biol Conservation 4(1):1–14
Wang W, Zhang C, Allen JM, Li W, Boyer MA, Segerson K, Silander JA Jr (2016) Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land 5(3):25. https://doi.org/10.3390/land5030025
Zachariades C, Day M, Muniappan R, Reddy GVP (2009) Chromolaena odorata (L.) king and robinson (Asteraceae). Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, pp 130–162
Zhai R, Zhang C, Allen JM, Li W, Boyer MA, Segerson K, Foote KE (2018) Predicting land use/cover change in Long Island Sound Watersheds and its effect on invasive species: a case study for glossy buckthorn. Ann GIS 24(2):83–97. https://doi.org/10.1080/19475683.2018.1450786
Zhang HT, Wang WT (2023) Prediction of the potential distribution of the endangered species Meconopsis punicea Maxim under future climate change based on four species distribution models. Plants 12(6):1376. https://doi.org/10.3390/plants12061376
The authors are thankful to Climatologies at High Resolution for the Earth’s Land Surface Areas (CHELSA) and Food and Agriculture Organization (FAO) portals for providing the required bioclimatic variables and required data sets for research use. AHT-A is supported by the DOST-ASTHRDP Scholarship, and NHAD as a Balik Scientist grantee by the DOST-PCAARRD. This project is supported by the National Research Council of the Philippines (NRCP) through the Program INFLORAS and small grants from the UST-RCNAS given to CBM and NHAD.