Research Articles | Published: 13 March, 2019
DOI: 10.1007/s42535-019-00009-4
First Page: 78
Last Page: 91
Views: 16005
Keywords: Wound healing, Gum acacia, Hydrogels, Oxygen permeability, Biodegradability, Hemocompatibility
Abstract
Hydroactive wound dressings ensure a physiologically moist wound milieu which enhances healing and patient comfort. Polymers like polyurethane, salts of alginic acid, collagen, cellulose and other gelable polysaccharides are commonly used for preparation of hydrogels but have their own limitations. In the present study acacia gum, a natural polysaccharide having known antioxidant and wound healing properties has been blended with polyvinyl alcohol and prepared hydrogel matrix further explored for its wound healing potential. Structural characterization of blended films by FTIR and XRD method showed that polysaccharide gum associated with PVA molecules via acetal bridges and they were amorphous in nature. The gel exhibited free swell capacity of 64 g 0.100 cm−2, which is comparable to the commercially available films recommended for heavily exuding wounds. The GA/PVA blends showed 34% moisture retention (Rh) ability after 24 h and their fluid absorbing (26%) and fluid donation (16%) ability make them suitable for moist and fibrinous wounds. They also exhibited blood compatibility, oxygen permeability, bacterial impermeability, antioxidant activity, iron chelation ability and biodegradability. In vivo healing potential has been evaluated on Swiss albino mice where hydrogel coated wounds showed faster and scar-less wound regeneration. In vitro Povidone-Iodine loading and release studies showed that iodine release followed Fickian diffusion process. Prepared hydrogels are breathable and hydrophilic in nature and are able to maintain appropriate moisture level at wound surface, suitable for acceleration of wound healing process. Based upon the studied properties the designed hydrogels are recommended for dry, necrotic and low exuding wounds.
References
- Abu-Dalo MA, Othman AA, Al-Rawashdeh NAF (2012) Exudate gum from Acacia trees as green corrosion inhibitor for mild steel in acidic media. Int J Electrochem Sci 7:9303–9324
- Ahmed Mohamed H, Mohamed Al-Shaigi RS (2014) The impact of marketing strategy on export performance (case study of Sudan gum arabic export performance). Int J Environ Sci Tech 3:1618–1635
- Albert M (2008) The role of hyperbaric oxygen therapy in wound healing. Wound Care Canada 6:60–62
- Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183
- Ali AA, Ali KE, Fadlalla A, Khalid KE (2008) The effects of GA oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in Central Sudan. Nat Prod Res 22:12–21
- American Society for Testing and Materials ASTM E (1996) Standard test methods for water vapour transmission of materials ASTM E 96–93. American Society for Testing and Materials, Philadelphia
- American Society for Testing and Materials ASTM F (2000) Standard practices for assessment of haemolytic properties of materials. American Society for Testing and Materials, Philadelphia
- Angel DE, Morey P, Storer JG, Mwipatayi BP (2008) The great debate over iodine in wound care continues: a review of the literature. Wound Pract Res 6:6–21
- Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342
- Bhatnagar M, Parwani L, SharmaV Ganguli J, Bhatnagar A (2013) Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials. Indian J Exper Biol 5:804–810
- Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923
-
- Bruin P, Jonkman MF, Meijer HJ, Permings AJ (1990) A new porous polyether urethane wound covering. J Biome Mater Res 24:217–226
- Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR (2012) Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 4:S54–S56
- Chime Salome A, Onunkwo Godswill C, Onyishi Ikechukwu I (2013) Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review. Res J Pharm Biol Chem Sci 4:97–103
- Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophy 315:161–169
- Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17:91–96
- Eming SA et al (2006) A novel property of povidon-iodine: Inhibition of excessive protease levels in chronic non-healing wounds. J Invest Dermatol 126:2731–2733
- Esa NM, Hern FS, Ismail A, Yee CL (2010) Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem 122:1055–1060
- Field FK, Kerstein MD (1994) Overview of wound healing in a moist environment. Am J Surg 167:2S–6S
- Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca
- Giacometti A, Cirioni O, Greganti G, Fineo A et al (2002) Antiseptic compounds still active against bacterial strains isolated from surgical wound infections despite increasing antibiotic resistance. Eur J Clin Microbiol Infect Dis 21:553–556
- Glover DA, Ushida K, Phillips AO, Riley SG (2009) Acacia (sen) Supergum (TM) (Gum arabic): an evaluation of potential health benefits in human subjects. Food Hydrocolloid 23:410–415
- Gulrez S, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterization and applications. In: Capri A (ed) Progress in molecular and environmental bioengineering from analysis and modelling to technology applications. InTech, Rijeka, Croatia, pp 117–150
- Halliwell B (1989) Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action? Free Radical Bio Med 7:645–651
- Hampton S (2011) KerraMax®: managing highly exuding wounds. J Community Nurs 25:4–8
- Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12
- Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121–136
- Ibrahim MS, Ibrahim SM, Farag SA (2007) Characterization, thermal and mechanical behaviours of gamma irradiated gum Arabic/polyvinyl alcohol polymer blends. Poly Plast Tech Eng 46:1143–1149
- Imai Y, Nose YJ (1972) New method for evaluation of antithrombogenicity of materials. J Biomed Mater Res 6:165–172
- International Organization for Standardization ISO 10993–10 (2003) Biological evaluation of medical devices-Part 10: tests for irritation and delayed-type hypersensitivity
- Islam AM, Phillips GO, Sljivo A, Snowden MJ, Williams PA (1997) A review of recent developments on the regulatory, structural and functional aspects of gum arabic. Food Hydrocolloid 11:493–505
- Jahan N, Afaque SH, Khan NA, Ahmad G, Ansari AA (2008) Physico-chemical studies of gum acacia. Nat Prod Rad 7:335–337
- Jary A, Lurton Y, Gicquel V, Abault Y, Basle B (2007) Evaluation of the fluid affinities of amorphous hydrogel dressings. Le Journal des Plaies et Cicatrisations 58:97–100
- Jayaraja Kumar K, Hemanth Kumar Reddy C, Gunashakaran V, Ramesh Y (2009) Application of broad spectrum antiseptic povidone iodine as powerful action: a review. J Pharma Sci Technol 1:48–58
- Kaith BS, Kumar K (2007) Preparation of Psyllium mucilage and acrylic acid based hydrogels and their application in selective absorption of water from different oil/water imulsions. Iran Polym J 16:529–538
- Katayama T, Nakauma M, Todoriki S, Phillips GO, Tada M (2006) Radiation-induced polymerization of gum arabic (Acacia sengal) in aqueous solution. Food Hydrocolloid 20:983–989
- Kumari A, Kaith BS, Singh AS, Kalia S (2010) Synthesis, characterization and salt resistance swelling behavior of psy-g-poly(AA) hydrogel. Adv Mater Lett 1:123–128
- Lay-Flurrie K (2004) The properties of hydrogel dressings and their impact on wound healing. Prof Nurs 19:269–273
- Leitão AF, Gupta S, Silva JP, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloid Surface B 111:493–502
- Litwin CM, Rayback TW, Skinner J (1996) Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect. Immun 64:2834–2838
- Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, Liao J (2009) Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Mater Sci Eng C 21:261–266
- Lu G, Ling K, Zhao P et al (2010) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair Regen 18:70–79
- Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548
- Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aus Syst Bot 16:1–18
- Mishra A, Chaudhary N (2010) Study of povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artif Organs 23:122–128
- Nwomeh BC, Liang HX, Diegelmann RF, Cohen IK, Yager DR (1998) Dynamics of the matrix metalloproteinases MMP-1 and MMP-8 in acute open human dermal wounds. Wound Repair Regen 6:127–134
- Oyaizu M (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315
- Parwani L, Bhatnagar M, Bhatnagar A, Sharma V (2012) Reactive oxygen species control by plant biopolymers intended to be used in wound dressings. IJPPS 4:506–510
- Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Del Rev 53:321–339
- Rehman KU, Wingertzahn MA, Teichberg S, Harper RG, Wapnir RA (2003) Gum arabic. (GA) modifies paracellular water and electrolyte transport in the small intestine. Dig Dis Sci 48:755–760
- Rezanejade Bardajeea G, Pourjavadi A, Soleymanb R, Sheikh N (2010) Gamma irradiation mediated synthesis of a new superabsorbent hydrogel network based on poly (acrylic acid) grafted onto salep. J Iran Chem Soc 7:652–662
- Sadeghi M, Hosseinzadeh H (2008) Synthesis and swelling behavior of starch-poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel. Turk J Chem 32:375–388
- Sadeghi M, Hosseinzadeh H (2011) Synthesis and properties of biopolymer based on gelatin-G-poly (sodium acrylate-co-acrylamide) for cephalexin controlled release. Turk J Biochem 36:334–341
- Sadeghi M, Ghasemi N, Kazemi M, Soleimani F (2012) Synthesis, swelling behavior, salt and pH sensitivity of cross linked carrageenan-graft-poly (acrylamide-co-itaconic acid) superabsorbent hydrogel. Middle-East J Sci Res 11:311–317
- Sedlarik V, Saha N, Sedlarikova J, Saha P (2008) Biodegradation of blown films based on poly (lactic acid) under natural conditions. Macromol Symp 272:100–103
- Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794
- Simon DA, Dix FP, McCollum CN (2004) Management of venous leg ulcers. Br Med J 328:1358–1362
- Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 45:782–791
- Soler DM, Rodriguez Y, Correa H, Moreno A, Carrizales L (2012) Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation. Radiat Phys Chem 81:1249–1253
- Street C, Anderson DMW (1983) Refinement of structures previously proposed for gum arabic and other acacia gum exudates. Talanta 30:887–893
- Surgical Materials Testing Laboratory SMTL TM 238 (2005) Test method for fluid affinity of hydrogels. Report, Wales
- Tarun K, Gobi N (2011) Calcium alginate/PVA blended nano fibre matrix for wound dressing. Ind J Fibre Textile Res 37:127–132
- Thomas S, Hay NP (1994) Assessing the hydroaffinity of hydrogel dressings. J Wound Care 3:89–92
- Thomas S, Hay NP (1995) Fluid handling properties of hydrogel dressings. Ostomy Wound Manag 41:54–59
- Thomas S, Hughes G, Fram P, Hallett A (2005) An in vitro comparison of the physical characteristics of hydrocolloids, hydrogels, foams and alginate/CMC fibrous dressings. SMTL Report, pp 1–24
- Tomic SL, Micic MM, Dobic SN, Filipovic JM, Suljovrujic EH (2010) Smart poly (2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79:643–649
- Traoré O, Fayard SF, Laveran H (1996) An in-vitro evaluation of the activity of povidone-iodine against nosocomial bacterial strains. J Hosp Infect 34:217–222
- Vandeputte J, Hoekstra H (2006) Observed hypergranulation may be related to oedema of granulation tissue. https://www.medline.com/wound-skin-care/derma-gel/lit/Observed%20Hypergranulation.pdf. Accessed 11 Oct 2012
- Wapnir RA, Sherry B, Codipilly CN, Goodwin LO, Vancurova I (2008) Modulation of rat intestinal nuclear factor NF-kappaB by gum arabic. Rat small intestine by gum arabic. Dig Dis Sci 53:80–87
Author Information
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Newai, India