Expanding the horizons of nanotechnology in agriculture: recent advances, challenges and future perspectives

, , , , , ,


Review Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-019-00090-9
First Page: 203
Last Page: 221
Views: 1224


Keywords: Nanomaterials, Agriculture, Nano-fertilizers, Green synthesis, Sustainable development


Abstract


The speedy progress towards the utilization of nanomaterials (NMs) is being extensively carried out in the fields of agriculture and food industry due to their varied properties. In recent years, a number of studies have been accomplished to interrogate intricate mechanism by which nanoparticles (NPs) influence plant growth, metabolism and development. Both positive and negative impacts of NMs on the growth of plant at various developmental stages are well documented. The effect of NMs on plant growth and development differ greatly depending on the concentration, composition, size and various important physicochemical properties of NMs. Synthesis as well as utilization of nano-fertilizers is one of the promising approaches regarding significant enhancement in the agricultural yield across the world. Application of biosynthesized NMs in the field of agriculture has progressed in sustainable development. The biological synthesis of NMs consisting of natural reducing agents without the use of toxic chemicals and the consumption of high energy has attracted the focus of scientists towards biological methods. This review summarizes the application of NMs on plant growth and development, uptake and translocation of NMs within plant tissues. This evaluation also attempts to examine the biological synthesis of NMs and their antimicrobial activity as well as their roles in agricultural sector could prove to be a boon for the society in the coming future.


Nanomaterials, Agriculture, Nano-fertilizers, Green synthesis, Sustainable development


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


  1. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186

  2. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

  3. Anjum M, Pradhan SN (2018) Application of nanotechnology in precision farming: a review. IJCS 6(5):755–760

  4. Apperlot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater J 19:842–852

  5. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

  6. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

  7. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and negative bacterial strains. Int J Nano Med 7:3527–3535

  8. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216

  9. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

  10. Basiuk EV, Ochoa-Olmos OE, De la Mora-Estrada LF (2011) Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants. J Nanosci Nanotechnol 11(4):3016–3038

  11. Becon Nanoscience and Nanotechnology Symposium Report, Becon A (2000) National Institutes of Health Bioengineering Consortium. NIH, Bethesda

  12. Bhumi G, Savithramma N (2014) Biological synthesis of zinc oxide NPs from Catharanthus roseus (L.) G. Don. Leaf extract and validation for antibacterial activity. Int J Drug Dev Res 6(1):208–214

  13. Blois L, Lay-Ekuakille A (2018) Reliability and metrology features for manufacturing process of nanoelements for geo-environmental protection. In: 2018 nanotechnology for instrumentation and measurement (NANOfIM), pp 1–4. IEEE, New York

  14. Boldyryeva H, Umeda N, Plaskin OA, Takeda Y, Kishimoto N (2005) High-influence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373–377

  15. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011a) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282–285

  16. Boonyanitipong P, Kumar P, Kositsup B, Baruah S, Dutta J (2011b) Effects of zinc oxide nanoparticles on roots of rice Oryza sativa L. In: International conference on environment and bioscience IPCBEE, 21st edn. IACSIT Press, Singapore

  17. Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

  18. Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78:2768–2774

  19. Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology 57(12)

  20. Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V (2014) Manufacturing nanomaterials, from research to industry. Manuf Rev 1(11):119

  21. Choudhary D, Kumar S (2018) Nanotechnology applications in agricultural and biological engineering. In: Sustainable biological systems for agriculture, pp 59–92. Apple Academic Press, Florida

  22. Cifuentes Z, Custardoy L, Fuente JM, Marquina C, Ibarra MR, Rubiales D et al (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnol 8:26

  23. Concenco G, Galon L (2011) Plasmodesmata: symplastic transport of herbicides within the plant. Herbic Theory Appl 455–470

  24. Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897

  25. Das A, Kamle M, Bharti A, Kumar P (2019) Nanotechnology and it’s applications in environmental remediation: an overview. Vegetos 1–11

  26. Dastmalchi K, Damien-Dorman HJ, Laakso I, Hiltunen R (2007) Chemical composition and antioxidative activity of Molavian balm (Dracocephalum moldavica L.) extracts. LWT Food Sci Technol 40:1655–1663

  27. Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA, Dhar SK, Yang HS, Chen Y, St Clair DK (2008) Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 29:1920–1929

  28. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

  29. Dupas C, Lahmani M (2007) Nanoscience: nanotechnologies and nanophysics. Springer, Berlin

  30. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plant 132:491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x

  31. Eichert T, Kurtz Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nanoparticles. Physiol Plant 134:151–160

  32. Elizabath A, Babychan M, Mathew AM, Syriac GM (2019) Application of nanotechnology in agriculture. Int J Pure Appl Biosci 7(2):131–139

  33. Eustis S, Hsu HY, El-Sayed MA (2005) Gold nanoparticle formation from photochemical reduction of Au3 by continuous excitation in colloidal solutions. A proposed molecular mechanism. J Phys Chem A B 109:4811–4815

  34. Fankam Gabriel A, Kuiate JR, Kuete V (2017) Antibacterial and antibiotic resistance modulatory activities of leaves and bark extracts of Recinodindron heudelotii (Euphorbiaceae) against multidrug-resistant Gram-negative bacteria. BMC Complem Altern Med 17(1):168

  35. Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91(4):506–511

  36. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

  37. Floros JD, Newsome R, Fisher W, Barbosa-Cánovas GV, Chen H, Dunne CP et al (2010) Feeding the world today and tomorrow: the importance of food science and technology. Compr Rev Food Sci Food Saf 9:572–599. https://doi.org/10.1111/j.1541-4337.2010.00127.x

  38. Frankart C, Eullaffroy P, Vernet G (2002) Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol Environ Saf 53(3):439–445

  39. Gajjar P et al (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9

  40. Ganguly R, Singh AK, Kumar R, Gupta A, Pandey AK, Pandey AK (2019) Nanoparticles as modulators of oxidative stress. In: Nanotechnology in modern animal biotechnology, pp 29–35. Elsevier, New York

  41. Gautam S, Misra P, Shukla PK, Ramteke PW (2016) Effect of copper oxide nanoparticle on the germination, growth and chlorophyll in soybean (Glycine max L.). Vegetos Int J Plant Res 29:157–160

  42. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophies levels. Plant and human lymphocytes. Chemosphere 9:22

  43. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

  44. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11

  45. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559

  46. Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9(1):373

  47. Hanley C, Janet L, Alex P, Reddy KM, Coombs I, Andrew C, Kevin F, Denise W (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 19:295103

  48. Hebbalalu D, Lalley J, Nadagouda M, Varma R (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1:703–712

  49. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

  50. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

  51. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560

  52. Hutasoit S, Suada IK, Susrama IGK (2013) Antifungal activity test extract some type of marine life link to Aspergillus flavus and Penicillium sp. E-J Trop Agroecotechnol 2:27–38

  53. Irzh A, Genish I, Klein L, Solovyov LA, Gedanken A (2010) Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides. Langmuir 26:5976–5984

  54. Ivask A, George S, Bondarenko O, Kahru A (2012) Metal-containing nano-antimicrobials, differentiating the impact of solubilized metals and particles. In: Cioffi N, Rai M (eds) Nano-antimicrobials progress and prospect. Springer, Berlin, pp 253–290

  55. Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediat 15(2):142–153

  56. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Int J Phytoremediat 46:132–137

  57. Jahanban L, Davaria M (2013) Organic agriculture and nanotechnology, ‘building organic bridges’, at the Organic World Congress, Istanbul (eprint ID 23620)

  58. Jayaseelan C et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

  59. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

  60. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

  61. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF et al (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3)

  62. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem

  63. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

  64. Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98(3):849–864

  65. Kora A, Arunachalam J (2013) Biosynthesis of silver nanoparticles by the seed extract of Strychnos potatorum. A natural phytocoagulant. IET Nanobiotechnol 7:83–89

  66. Krishnamoorthy V, Hiller DB, Ripper R, Lin B, Vogel SM, Feinstein DL, Oswald S, Rothschild L, Hensel P, Rubinstein I, Minshall R, Weinberg GL (2012) Epinephrine induces rapid deterioration in pulmonary oxygen exchange in intact, anesthetized rats, a flow and pulmonary capillary pressure-dependent phenomenon. Anesthesiology 117:745–754

  67. Kumar Shashank, Pandey Abhay K (2013) Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos Int J Plant Res 26(1):301–307

  68. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199

  69. Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

  70. Lawre S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. I JASBT 3(7):874–881

  71. Lee WM, Kwak JI, An YJ (2008) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

  72. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

  73. Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R, Christensen L, Clemons CB, Wilber JP, Young GW, Kang AG, Panzner MJ, Cannon CL, Yun YH, Youngs WJ, Seckinger NM, Cope EK (2012) In vitro antimicrobial studies of silver carbene complexes, activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67:138–148

  74. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control. Potential applications and implications. Water Res 42:4591–4602

  75. Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing Univ (natural science edition) 36:161–164

  76.  

  77. Liu R, Zhang H, Lal R (2016a) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination, nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):1

  78. Liu Ruiqiang, Zhang Huiying, Lal Rattan (2016b) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227(1):42

  79. Lv J, Zhang S, Luo L, Zhang J, Yangc K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77

  80. Ma H, Williams PL, Diamond SA et al (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

  81. Mafune F, Kohno J, Takeda Y, Kondow TJ (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056

  82. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

  83. Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P, Anbar AD, Shock E, Hartnett HE (2013) Environ Pollut 174:150–156

  84. Maurya A, Chauhan P, Mishra A, Pandey AK (2012) Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. coli. J Res Updates Polym Sci 1(1):43–51

  85. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

  86. Mohammadinejad R, Pourseyedi S, Baghizadeh A, Ranjbar S, Mansoori GA (2013) Synthesis of silver nanoparticles using Silybum marianum seed extract. J Nanosci Nanotechnol 9:221–226

  87. Moody C, Hassan H (1982) Mutagenicity of oxygen free radicals. Proc Natl Acad Sci USA 72:2855–2859

  88. Mukherjee A, Mohammed Sadiq I, PrathnaTC, Chandrasekaran N (2011) Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. In: Méndez-Vilas A (ed) Science against microbial pathogens communicating current research and technological advances Formatex. Microbiology (Badajoz, Spain) 1(3):245–251

  89. Mukhopadhyay SS (2005) Weathering of soil minerals and distribution of elements: pedochemical aspects. Clay Res 24:183–199

  90. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizersand their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

  91. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

  92. Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192

  93. Narendhran S, Rajiv P, Sivaraj R (2016) Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull Mater Sci 39(2):415–421

  94. Oesterling E, Chopra N, Gavalas V, Arzuaga X, Lim EJ, Sultanab R, Butterfield DA, Bachas L, Hennig B (2008) Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol Lett 178:160–166

  95. Órdenes-Aenishanslins NA, Saona LA, Durán-Toro VM, Monrás JP, Bravo DM, Pérez-Donoso JM (2014) Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Factories 13(1):90

  96. Osterholm P, Astrom M (2004) Quantification of current and future leaching of sulfur and metals from boreal acid sulfate soils, western Finland. Aust J Soil Res 42:547–551

  97. Paladini Federica, Pollini M, Sannino A, Ambrosio A (2015) Metal-based antibacterial substrates for biomedical applications. Biomacromolecules 16(7):1873–1885

  98. Patel N, Desa P, Pael N, Jha A, Gautam HK (2014) Agronatechlogy for plant fungal disease management: a review. Int J Curr Micobiol Appl Sci 3(10):71–84. https://doi.org/10.3923/jbs.2010.273.290

  99. Perreault F, Oukarroum A, Pirastru L, Sirois L, GersonMatias W, Popovic R (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll fluorescence imaging in Lemnagibba. J Bot 763142:9

  100. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 14–19:3

  101. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452(453):321–332

  102. Prema P, Raju R (2009) Fabrication and characterization of silver nanoparticle and its potential antibacterial activity. Biotechnol Bioproc E 14:842–847

  103. Presley DR, Ransom MD, Kluitenberg GJ, Finnell PR (2004) Effect of thirty years of irrigation on the genesis and morphology of two semi-arid soils in Kansas soil. Soil Sci Soc Am 68:1916–1926

  104. Puišo IJ, Mačionienė JD, Šalomskienė J (2013) Antimicrobial activity of silver nanoparticles synthesized using plant extracts. Vet Zootech 65(87)

  105. Pushpavanam Karthik, Santra S, Rege Kaushal (2014) Biotemplating plasmonic nanoparticles using intact microfluidic vasculature of leaves. Langmuir 30(46):14095–14103

  106. Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol Appl Sci 7:3325–3335

  107. Rai VR, Bai AJ (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Microbiology series no. 3, vol 1, Badajoz, pp 197–209. Formatex, Mysore

  108. Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ (2012) Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117

  109. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res J 2:48–57

  110. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

  111. Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. J NanoSci Nano Technol 2(1):41–45

  112. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:2139021–2139023

  113. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. https://doi.org/10.1038/nature08238

  114. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by E. coli. J Nutr 133:4077–4082

  115. Sarlach RS, Achlam S, Bains NS, Gill MS (2013) Effect of foliar application of osmoprotectants and ethylene inhibitor to enhance heat tolerance in wheat (Triticum aestivum L.). Vegetos 26(1):266–271

  116. Savithramma N, Ankanna S, Bhumi G (2012a) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2:61–68

  117. Savithramma N, Ankanna S, Bhumi G (2012b) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2

  118. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

  119. Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci 58:343–351. https://doi.org/10.1002/ps.462

  120. Sepeur S (2008) Nanotechnology: technical basics and applications. Vincentz Network GmbH & Co KG, Hannover

  121. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

  122. Sharma Vinay (2013) Pathogenesis related defence functions of plant chitinases and β-1, 3-glucanases. Vegetos 26(2s):205–218

  123. Showmya J, Harini K, Pradeepa M, Thiyagarajan M, Manikandan R, Venkatachalam P, Geetha N (2012) Rapid green synthesis of silver nanoparticles using seed extract of Foenculum vulgare and screening of its antibacterial activity. Plant J Plant Mol Biol 13:31–38

  124. Shukla M, Wattal DD (2013) Biotechnological potentials of microalgae: past and present scenario. Vegetos 26(2s):229–237

  125. Shukla N, Shukla PK, Verma Y, Misra P (2016) Effect of drought stress on biochemical changes in drought tolerant and drought sensitive barley (Hordium vulgare L.) cultivars. Vegetos Int J Plant Res 29:152–156

  126.  

  127. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

  128. Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43(21):8423–8429

  129. Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2(4):313–317. https://doi.org/10.5185/amlett.indias.204

  130. Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol S0168–1656(16):31400–31406

  131. Singh A, Hussain I, Singh NB, Singh H (2019) Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicol Environ Saf 182:109410

  132. Singh AK, Rana HK, Yadav RK, Pandey AK (2020) Dual role of microalgae: phycoremediation coupled with biomass generation for biofuel production. In: Restoration of wetland ecosystem: a trajectory towards a sustainable environment, pp 161–178. Springer, Singapore

  133. Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2):1516–1520

  134. Steuber J, Krebs W, Dimroth P (1997) The Na+-translocating NADH: ubiquinone oxidoreductase from Vibrio alginolyticus. Eur J Biochem 249:770–776

  135. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

  136. Suriya J, Bharathi RS, Sekar V, Rajasekaran R (2012) Biosynthesis silver nanoparticles and its antibacterial activity using seaweeds Urospora sp. Afr J Biotechnol 11(58):12192–12198. https://doi.org/10.5897/AJB12.452

  137. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908

  138. Sweet MJ, Chesser A, Singleton I (2012) Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. Adv Appl Microbiol 80:113–142

  139. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nanotechnol Lett 11:4029–4036. https://doi.org/10.1021/nl202559p

  140. Tillman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

  141. Treguer M, Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni JJ (1998) Dose rate effect on radiolytic synthesis of gold–silver bimetallic clusters in solution. J Phys Chem Biophys B 102:4310–4321

  142. Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

  143. Urwat U, Zargar SM, Manzoor M, Ahmad SM, Ganai NA, Murtaza I, Khan I, Nehvi FA (2019) Morphological and biochemical responses of Phaseolus vulgaris L. to mineral stress under in vitro conditions. Vegetos 32(3):431–438

  144. Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, Jyothi NVV (2014) Bioinspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys B Condens Matter 449:67–71. https://doi.org/10.1016/j.physb.2014.04.031

  145. Wang Li-Jun, Wang Yun-Hua, Li Min, Fan Ming-Sheng, Zhang Fu-Suo, Xue-Min Wu, Yang Wen-Sheng, Li Tie-Jin (2002) Synthesis of ordered biosilica materials. Chin J Chem 20(1):107–110

  146. Wang C, Wang L, Wang Y, Liang Y, Zhang J (2012) Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens. Environ Earth Sci 65:1643–1649

  147. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2(3):40–44

  148. Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GHM (2008) Nanomaterials in soils. Geoderma 146:291–302

  149. Wu B, Huang R, Sahu M, Feng X, Biswas P, Tang YJ (2010) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408(7):1755–1758

  150. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. samba cleaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta Part A 137:236–243

  151. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

  152. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88. https://doi.org/10.1007/s12011-007-0046-4

  153. Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226(9):296

  154. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7(10):47674

  155. Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535

  156. Zhang G, Wang DJ (2008) Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography. J Med Chem 130:5616–5617

  157. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9(3):479–489

  158. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

  159. Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

  160. Zia M, Yaqoob K, Mannan A, Nisa S, Raza G, ur Rehman R (2019) Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions. Vegetos 2019:1–10

  161.  

  162.  

  163.  

  164.  

  165.  

  166.  

  167.  

  168.  

  169.  

  170.  


  171.  


Acknowledgements


The authors are thankful to the Council of Scientific and Industrial Research (CSIR) (Grant 370716), University Grant Commission (UGC), New Delhi, India and University of Allahabad, India for providing financial assistance to Ravi Kumar Yadav.


Author Information


Yadav Ravi Kumar
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India

Singh N. B.
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
singhnb166@gmail.com

Singh Ajey
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India


Yadav Vijaya
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India


Bano Chanda
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India

Khare Shubhra
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India

Niharika
Plant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, India