Citrinin (CIT), a polyketide mycotoxin from a mangrove endophytic fungus Penicillium rubens EF 363 and its bioactive potential

*Article not assigned to an issue yet

, , ,


Research Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-025-01162-9
First Page: 0
Last Page: 0
Views: 252

Keywords: Endophytic fungi, Mangroves, n Penicillium rubensn , Bioactive compounds, Citrinin


Abstract


Endophytic fungi, residing harmlessly within plant tissues, represent an underexplored, but promising source of bioactive compounds. This study explores the bioactive potential of an endophytic fungus, Penicillium rubens EF 363, isolated from a mangrove plant, Ceriops tagal. The bioactive compound was extracted, purified, characterized and identified as Citrinin. This compound displayed significant antimicrobial activity with a minimum inhibitory concentration (MIC) of 5–20 µg/ml against bacterial pathogens (Bacillus cereus, Escherichia coli, and Staphylococcus aureus), 10 µg/ml against Fusarium solani, and 90% inhibition for Curvularia lunata. Citrinin exhibited an IC50 of 23.16 µg/ml in the mammalian cell line CHO-K1 and an LC50 of 33.37 µg/ml in brine shrimps which is well above the therapeutic levels. The study highlights the antimicrobial efficacy of Citrinin, presenting it as a promising bioactive compound derived from endophytic fungi.

Endophytic fungi, Mangroves, n                     Penicillium rubensn                  , Bioactive compounds, Citrinin


References


Amin M, Zhang XY, Xu XY, Qi SH (2020) New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp SCSIO z015. Nat Prod Res 34(9):1219–1226. https://doi.org/10.1080/14786419.2018.1517404


Aydin Y, Orta Yilmaz B, Yildizbayrak N, Korkut A, Arabul Kursun M, Irez T, Erkan M (2021) Evaluation of citrinin-induced toxic effects on mouse Sertoli cells. Drug Chem Toxicol 44(6):559–565. https://doi.org/10.1080/01480545.2019.1643681


Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36:493–496


De Oliveira Filho JWG, Andrade TDJADS, de Lima RMT, Dos Reis AC, Silva DHS, Santos JVDO, Oliveira AC, Melo Cavalcante AADC (2021) Citrinin against breast cancer: a cytogenotoxicological study. Phytother Res 35(1):504–516. https://doi.org/10.1002/ptr.6833


Deshmukh SK, Gupta MK, Prakash V, Saxena S (2018) Endophytic fungi: a source of potential antifungal compounds. J Fungi 4(3):77. https://doi.org/10.3390/jof4030077


Du L, Liu HC, Fu W, Li DH, Pan QM, Zhu TJ, Chen HY, Gu QQ (2011) Unprecedented citrinin trimer tricitinol B functions as a novel topoisomerase IIα inhibitor. J Med Chem 54(16):5796–5810. https://doi.org/10.1021/jm200641u


EFSA Panel on Contaminants in the Food Chain (CONTAM) (2012) Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J 10(3):2605. https://doi.org/10.2903/j.efsa.2012.2605


Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330. https://doi.org/10.1128/AEM.61.4.1323


Greenhill AR, Blaney BJ, Shipton WA, Frisvad JC, Pue A, Warner JM (2008) Mycotoxins and toxigenic fungi in sago starch from Papua New Guinea. Lett Appl Microbiol 47(4):342–347. https://doi.org/10.1111/j.1472-765X.2008.02392.x


Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526. https://doi.org/10.1021/np058137u


Hamed AA, El-Shiekh RA, Mohamed OG, Aboutabl EA, Fathy FI, Fawzy GA, Gabr MT, Ghoneim MM, Al-Karmalawy AA (2023) Cholinesterase inhibitors from an endophytic fungus Aspergillus niveus Fv-er401: Metabolomics, isolation and molecular docking. Molecules 28(6):2559. https://doi.org/10.3390/molecules28062559


Hubka V, Nováková A, Kolařík M, Jurjević Ž, Peterson SW (2015) Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107(1):169–208. https://doi.org/10.3852/14-143


Keblys M, Bernhoft A, Höfer CC, Morrison E, Larsen HJS, Flåøyen A (2004) The effects of the Penicillium mycotoxins citrinin, cyclopiazonic acid, ochratoxin A, patulin, penicillic acid, and roquefortine C on in vitro proliferation of porcine lymphocytes. Mycopathologia 158:317–324. https://doi.org/10.1007/s11046-004-0035-9


Kong K, Huang Z, Shi S, Pan W, Zhang Y (2023) Diversity, antibacterial and phytotoxic activities of culturable endophytic fungi from Pinellia pedatisecta and Pinellia ternata. BMC Microbiol 23(1):1–13. https://doi.org/10.1186/s12866-023-02535-0


Kouipou Toghueo RM, Boyom FF (2019) Endophytic fungi from Terminalia species: a comprehensive review. J Fungi 5(2):43. https://doi.org/10.3390/jof5020043


Li HT, Duan RT, Liu T, Yang RN, Wang JP, Liu SX, Wang XF, Xu ZQ, Li Y, Ding ZT (2020) Penctrimertone, a bioactive citrinin dimer from the endophytic fungus Penicillium sp. T2–11. Fitoterapia 146:104711. https://doi.org/10.1016/j.fitote.2020.104711


Luo H, Qing Z, Deng Y, Deng Z, Tang XA, Feng B, Lin W (2019) Two polyketides produced by endophytic Penicillium citrinum DBR-9 from medicinal plant Stephania kwangsiensis and their antifungal activity against plant pathogenic fungi. Nat Prod Commun 14(5):1934578X19846795. https://doi.org/10.1177/1934578X19846795


Martinho AM, Rodrigues-Filho E, Moitinho MDLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283. https://doi.org/10.1590/S0103-50532005000200013


Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215. https://doi.org/10.1093/nar/16.3.1215


Miller RA, Walker RD, Carson J, Coles M, Coyne R, Dalsgaard I, Deguara R, Dufour P, Eloe-Fadrosh EA, Furey W, Gauthier JM, Gray AL, Harwood D, Hassan F, Johansen LS, Malouin F, McAllister S, Møller TH, Narvaez D, Oliver GS, Owens A, Post GR, Sait L, Smith PL, Thorsen E, Torsvik V, Reimschuessel R (2005) Standardization of a broth microdilution susceptibility testing method to determine minimum inhibitory concentrations of aquatic bacteria. Dis Aquat Org 64(3):211–222. https://doi.org/10.3354/dao064211


Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4


Nakajima Y, Iguchi H, Kamisuki S, Sugawara F, Furuichi T, Shinoda Y (2016) Low doses of the mycotoxin citrinin protect cortical neurons against glutamate-induced excitotoxicity. J Toxicol Sci 41(2):311–319. https://doi.org/10.2131/jts.41.311


Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Yasumoto T et al (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37(1):55–65. https://doi.org/10.1016/S0041-0101(98)00149-X


Ou F, McGoverin C, Swift S, Vanholsbeeck F (2019) Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy. Anal Bioanal Chem 411:3653–3663. https://doi.org/10.1007/s00216-019-02046-9


Park SY, Kim R, Ryu CM, Choi SK, Lee CH, Kim JG et al (2008) Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa. FEMS Microbiol Ecol 65:229–237


Popli D, Anil V, Subramanyam AB, Namrath MN, Ranjitha VR, Rao SN, Rai RV, Govindappa M (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic, and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 46(sup1):676–683. https://doi.org/10.1080/21691401.2018.1492220


Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408


Revathy MR, Mohan AS, Kesavan D, Sarasan M, Philip R (2024) Endophytic fungi of spurred mangrove, Ceriops tagal and its bioactivity potential: predominance of Aspergillus species and its ecological significance. Microbe 4:100144. https://doi.org/10.1016/j.micbio.2024.100144


Salah A, Bouaziz C, Prola A, Pires Da Silva J, Bacha H, Abid-Essefi S, Lemaire C (2017) Citrinin induces apoptosis in human HCT116 colon cancer cells through endoplasmic reticulum stress. J Toxicol Environ Health A 80(23–24):1230–1241. https://doi.org/10.1080/15287394.2017.1384539


Subramani R, Kumar R, Prasad P, Aalbersberg W (2013) Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of Penicillium sp. Asian Pac J Trop Biomed 3(4):291–296. https://doi.org/10.1016/S2221-1691(13)60070-1


Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459. https://doi.org/10.1039/B001035I


Ujam NT, Ajaghaku DL, Okoye FB, Esimone CO (2021) Antioxidant and immunosuppressive activities of extracts of endophytic fungi isolated from Psidium guajava and Newbouldia laevis. Phytomedicine plus 1(2):100028. https://doi.org/10.1016/j.phyplu.2021.100028


White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications. Academic Press, pp 315–322


Yang CS, Heinsohn PA (2007) Sampling and analysis of indoor microorganisms. Wiley


Yoneyama M, Sharma RP, Kleinschuster SJ (1986) Cytotoxicity of citrinin in cultured kidney epithelial cell systems. Ecotoxicol Environ Saf 11(1):100–111. https://doi.org/10.1016/0147-6513(86)90009-5


Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771. https://doi.org/10.1039/B605086B

 


Author Information


Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin-16, India