Cassava consumption and the risk from cyanide poisoning

*Article not assigned to an issue yet

,


Review Articles | Published:

E-ISSN: 2229-4473.
Website: www.vegetosindia.org
Pub Email: contact@vegetosindia.org
DOI: 10.1007/s42535-024-01121-w
First Page: 0
Last Page: 0
Views: 2058

Keywords: Cassava, Cyanogenic compounds, Hybrid varieties, Cyanide


Abstract


Cassava is acknowledged by many as a major food source, and it can be processed into various by-products such as, garri, tapioca, fufu, flour, starch, etc. Enormous clinical and experimental research has now made cassava to be recognised not only for its importance in the food industry but also in non-food industries. Its importance in the production of drugs, biofuels and etcetera cannot be over emphasised. Nevertheless, a major hitch to the maximum utilization of this versatile plant is the presence of cyanogenic compounds that are distributed all over the plant. The emergence of hybrid varieties and other conventional methods have however helped to reduce this limitation of the plant, thus increasing its usability. This review seeks to establish an insight into the entirety of the plant, its distribution, physicochemical properties, phytochemicals, nutritional value, cyanide content and methods by which the risk of cyanide poisoning from cassava consumption can be attenuated.

Cassava, Cyanogenic compounds, Hybrid varieties, Cyanide


References


Abedi E, Hashemi SMB (2020) Lactic acid production– producing microorganisms and substrates sources-state of art. Heliyon 6(10):e04974. https://doi.org/10.1016/j.heliyon.2020.e04974


Abraham K, Buhrke T, Lampen A (2016) Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides: a crossover study in humans. Arch Toxicol 90(3):559–574. https://doi.org/10.1007/s00204-015-1479-8


Ajijolakewu KA, Ayoola AS, Agbabiaka TO, Zakariyah FR, Ahmed NR, Oyedele OJ, Sani A (2021) A review of the ethnomedicinal, antimicrobial, and phytochemical properties of Musa Paradisiaca (plantain). Bull Natl Res Centre 45(1):86. https://doi.org/10.1186/s42269-021-00549-3


Akpoghelie PO, Edo GI, Akhayere E (2022) Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. Biocatal Agric Biotechnol 45:102535. https://doi.org/10.1016/j.bcab.2022.102535


Akpoghelie PO, Edo GI, Ali SI, Kasar KA, Zainulabdeen K, Mohammed AA, Agbo JJ (2024) Effect of processing on the microbiological, proximate, antinutritional and mineral profile of selected yellow cassava varieties and sorghum malt as potential raw materials for alcoholic beverage production. Beverage Plant Res 1–11. https://doi.org/10.48130/bpr-0024-0022


Alam M, Rana Z, Islam S (2016) Comparison of the Proximate Composition, total carotenoids and total Polyphenol content of nine Orange-Fleshed Sweet potato varieties grown in Bangladesh. Foods 5(4):64. https://doi.org/10.3390/foods5030064


Alamgeer, Uttra AM, Ahsan H, Hasan UH, Chaudhary MA (2018) Traditional medicines of plant origin used for the treatment of inflammatory disorders in Pakistan: a review. J Tradit Chin Med 38(4):636–656. https://doi.org/10.1016/S0254-6272(18)30897-5


Arthur EK, Azeko ST (2020) Surface hardening of ferrous materials with cassava (Manihot spp.) waste: a review. Sci Afr 9:e00483. https://doi.org/10.1016/j.sciaf.2020.e00483


Awoyale W, Alamu EO, Chijioke U, Tran T, Takam Tchuente HN, Ndjouenkeu R, Maziya-Dixon B (2021) A review of Cassava Semolina (gari and Eba) end‐user preferences and implications for varietal trait evaluation. Int J Food Sci Technol 56(3):1206–1222. https://doi.org/10.1111/ijfs.14867


Ayele HH, Latif S, Müller J (2021) Influence of temperature and screw pressing on the quality of Cassava Leaf fractions. Agriculture 12(1):42. https://doi.org/10.3390/agriculture12010042


Ayele HH, Latif S, Müller J (2022) Pretreatment of the leaves of Ethiopian Cassava (Manihot esculenta Crantz) varieties: Effect of blanching on the quality of dried Cassava leaves. Appl Sci 12(21):11231. https://doi.org/10.3390/app122111231


Baguma M, Nzabara F, Balemba M, Malembaka G, Migabo EB, Mudumbi C, Chabwine G, J. N (2021) Konzo risk factors, determinants and etiopathogenesis: what is new? A systematic review. Neurotoxicology 85:54–67. https://doi.org/10.1016/j.neuro.2021.05.001


Bamidele OP, Fasogbon MB, Oladiran DA, Akande EO (2015) Nutritional composition of fufu analog flour produced from Cassava root (Manihot esculenta) and Cocoyam (Colocasia esculenta) tuber. Food Sci Nutr 3(6):597–603. https://doi.org/10.1002/fsn3.250


Bertoft E (2017) Understanding Starch structure: recent progress. Agronomy 7(3):56. https://doi.org/10.3390/agronomy7030056


Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B (2023) Antioxidant activity, metabolism, and Bioavailability of polyphenols in the Diet of animals. Antioxidants 12(6):1141. https://doi.org/10.3390/antiox12061141


Bilate Daemo B, Belew Yohannes D, Beyene M, T., Gebreselassie Abtew W (2022) Biochemical Analysis of Cassava (Manihot esculenta Crantz) Accessions in Southwest of Ethiopia. Journal of Food Quality, 2022, 1–13. https://doi.org/10.1155/2022/9904103


Boakye AA, Wireko-Manu FD, Oduro I, Ellis WO, Gudjónsdóttir M, Chronakis IS (2018) Utilizing cocoyam (Xanthosoma sagittifolium) for food and nutrition security: a review. Food Sci Nutr 6(4):703–713. https://doi.org/10.1002/fsn3.602


Boakye Peprah B, Parkes EY, Harrison OA, van Biljon A, Steiner-Asiedu M, Labuschagne MT (2020) Proximate Composition, Cyanide Content, and Carotenoid Retention after boiling of Provitamin A-Rich Cassava grown in Ghana. Foods 9(12):1800. https://doi.org/10.3390/foods9121800


Bolarinwa IF, Oke MO, Olaniyan SA, Ajala AS (2016) A Review of Cyanogenic Glycosides in Edible Plants. In Toxicology - New Aspects to This Scientific Conundrum. InTech. https://doi.org/10.5772/64886


Boukhers I, Boudard F, Morel S, Servent A, Portet K, Guzman C, Poucheret P (2022) Nutrition, Healthcare Benefits and Phytochemical properties of Cassava (Manihot esculenta) leaves sourced from three countries (Reunion, Guinea, and Costa Rica). Foods 11(14):2027. https://doi.org/10.3390/foods11142027


Bradbury JH, Denton IC (2011) Mild methods of processing cassava leaves to remove cyanogens and conserve key nutrients. Food Chem 127(4):1755–1759. https://doi.org/10.1016/j.foodchem.2011.02.053


Brzyski JR, Stieha CR, Nicholas McLetchie D (2018) The impact of asexual and sexual reproduction in spatial genetic structure within and between populations of the dioecious plant Marchantia inflexa (Marchantiaceae). Ann Botany. https://doi.org/10.1093/aob/mcy106


Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010) Cassava: the Drought, War and famine crop in a changing World. Sustainability 2(11):3572–3607. https://doi.org/10.3390/su2113572


Ceballos H, Hershey C, Iglesias C, Zhang X (2021) Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theor Appl Genet 134(8):2335–2353. https://doi.org/10.1007/s00122-021-03852-9


Chahyadi A, Elfahmi (2020) The influence of extraction methods on rutin yield of cassava leaves (Manihot esculenta Crantz). Saudi Pharm J 28(11):1466–1473. https://doi.org/10.1016/j.jsps.2020.09.012


Charoenkul N, Uttapap D, Pathipanawat W, Takeda Y (2011) Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT - Food Sci Technol 44(8):1774–1781. https://doi.org/10.1016/j.lwt.2011.03.009


Chimphepo L, Alamu EO, Monjerezi M, Ntawuruhunga P, Saka JDK (2021) Data on assessment of flours from advanced genotypes and improved cassava varieties for industrial applications. Data Brief 38:107332. https://doi.org/10.1016/j.dib.2021.107332


Chinma CE, Ariahu CC, Abu JO (2013) Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends. J Food Sci Technol 50(6):1179–1185. https://doi.org/10.1007/s13197-011-0451-8


Chisenga SM, Workneh TS, Bultosa G, Alimi BA (2019) Progress in research and applications of cassava flour and starch: a review. J Food Sci Technol 56(6):2799–2813. https://doi.org/10.1007/s13197-019-03814-6


Chutimanukul P, Piew-ondee P, Dangsamer T, Thongtip A, Janta S, Wanichananan P, Chutimanukul P (2024) Effects of Light Spectra on Growth, physiological responses, and antioxidant capacity in five Radish varieties in an indoor Vertical Farming System. Horticulturae 10(10):1059. https://doi.org/10.3390/horticulturae10101059


Dolan LC, Matulka RA, Burdock GA (2010) Naturally occurring Food toxins. Toxins 2(9):2289–2332. https://doi.org/10.3390/toxins2092289


Easson MLAE, Malka O, Paetz C, Hojná A, Reichelt M, Stein B, Vassão DG (2021) Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Sci Rep 11(1):13244. https://doi.org/10.1038/s41598-021-92553-w


Edo GI (2022) Antibacterial, phytochemical and GC-MS analysis of Thevetia peruviana extracts: an approach in drug formulation. Nat Resour Hum Health 2(4):418–426. https://doi.org/10.53365/nrfhh/146543


Edo GI, Ndudi W, Makia RS, Jikah AN, Yousif E, Gaaz TS, Umar H (2024a) Nutritional immunological effects and mechanisms of chemical constituents from the homology of medicine and food. Phytochem Rev. https://doi.org/10.1007/s11101-024-10034-0


Edo GI, Nwachukwu SC, Ali ABM, Yousif E, Jikah AN, Zainulabdeen K, Essaghah AEA (2024b) A review on the composition, extraction and applications of phenolic compounds. Ecol Front. https://doi.org/10.1016/j.ecofro.2024.09.008


Edo GI, Samuel PO, Oloni GO, Ezekiel GO, Ikpekoro VO, Obasohan P, Agbo JJ (2024c) Environmental persistence, bioaccumulation, and ecotoxicology of heavy metals. Chem Ecol 1–28. https://doi.org/10.1080/02757540.2024.2306839


Edo GI, Ugbune U, Ezekiel GO, Onoharigho FO, Agbo JJ (2023) Cyperus esculentus (tiger nut): its application in agriculture, food, health and nutrition. A review. Vegetos. https://doi.org/10.1007/s42535-023-00672-8


Ekeledo E, Latif S, Abass A, Müller J (2023) Amylose, rheological and functional properties of yellow cassava flour as affected by pretreatment and drying methods. Food Humanity 1:57–63. https://doi.org/10.1016/j.foohum.2023.03.004


Ekwomadu TI, Akinola SA, Mwanza M (2021) Fusarium mycotoxins, their metabolites (Free, Emerging, and masked), Food Safety Concerns, and Health impacts. Int J Environ Res Public Health 18(22):11741. https://doi.org/10.3390/ijerph182211741


Fadahunsi IF, Busari NK, Fadahunsi OS (2020) Effect of cultural conditions on the growth and linamarase production by a local species of Lactobacillus fermentum isolated from cassava effluent. Bull Natl Res Centre 44(1):185. https://doi.org/10.1186/s42269-020-00436-3


Floro VO, Labarta RA, López-Lavalle B, Martinez LA, J. M., Ovalle TM (2018) Household determinants of the adoption of Improved Cassava varieties using < scp > DNA fingerprinting to identify varieties in Farmer fields: a Case Study in Colombia. J Agric Econ 69(2):518–536. https://doi.org/10.1111/1477-9552.12247


Guira F, Some K, Kabore D, Sawadogo-Lingani H, Traore Y, Savadogo A (2017) Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Sci Nutr 5(3):415–423. https://doi.org/10.1002/fsn3.408


Gundersen E, Christiansen AHC, Jørgensen K, Lübeck M (2022) Production of leaf protein concentrates from cassava: protein distribution and anti-nutritional factors in biorefining fractions. J Clean Prod 379:134730. https://doi.org/10.1016/j.jclepro.2022.134730


Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52(2):676–684. https://doi.org/10.1007/s13197-013-0978-y


Hassan F, Edo GI, Nwosu LC, Jalloh AA, Onyibe PN, Itoje-akpokiniovo LO, Irogbo PU (2023) An inventory of medicinal plants used as sedative, analgesic and blood tonic in Abeokuta, Ogun State, Nigeria. Acta Ecol Sin 43(3):459–468. https://doi.org/10.1016/j.chnaes.2021.11.003


Hawashi M, Widjaja T, Gunawan S (2020) Solid-State Fermentation of Cassava Products for Degradation of Anti-Nutritional Value and Enrichment of Nutritional Value. In New Advances on Fermentation Processes. IntechOpen. https://doi.org/10.5772/intechopen.87160


Hendry-Hofer TB, Ng PC, Witeof AE, Mahon SB, Brenner M, Boss GR, Bebarta VS (2019) A review on ingested cyanide: risks, clinical presentation, Diagnostics, and Treatment challenges. J Med Toxicol 15(2):128–133. https://doi.org/10.1007/s13181-018-0688-y


Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G (2019) Farmers’ perceptions on the causes of cassava root bitterness: a case of konzo-affected Mtwara region, Tanzania. PLoS ONE 14(4):e0215527. https://doi.org/10.1371/journal.pone.0215527


Jikah AN, Edo GI (2023) Moringa oleifera: a valuable insight into recent advances in medicinal uses and pharmacological activities. J Sci Food Agric. https://doi.org/10.1002/jsfa.12892


Nyirenda K (2021) K. Toxicity Potential of Cyanogenic Glycosides in Edible Plants. In Medical Toxicology. IntechOpen. https://doi.org/10.5772/intechopen.91408


Khota W, Kaewpila C, Suwannasing R, Srikacha N, Maensathit J, Ampaporn K, Cherdthong A (2023) Ensiling Cyanide Residue and in Vitro Rumen Fermentation of Cassava Root Silage treated with cyanide-utilizing Bacteria and Cellulase. Fermentation 9(2):151. https://doi.org/10.3390/fermentation9020151


Latif S, Müller J (2015) Potential of cassava leaves in human nutrition: a review. Trends Food Sci Technol 44(2):147–158. https://doi.org/10.1016/j.tifs.2015.04.006


Lawson-Smith P, Jansen EC, Hyldegaard O (2011) Cyanide intoxication as part of smoke inhalation - a review on diagnosis and treatment from the emergency perspective. Scand J Trauma Resusc Emerg Med 19(1):14. https://doi.org/10.1186/1757-7241-19-14


Li S, Cui Y, Zhou Y, Luo Z, Liu J, Zhao M (2017) The industrial applications of cassava: current status, opportunities and prospects. J Sci Food Agric 97(8):2282–2290. https://doi.org/10.1002/jsfa.8287


Liu CY, Amani R, Sulaiman S, Mahmood K, Ariffin F, Mohammadi Nafchi A (2022) Formulation and characterization of physicochemical, functional, morphological, and antioxidant properties of cassava-based rice analogue. Food Sci Nutr 10(5):1626–1637. https://doi.org/10.1002/fsn3.2785


Liu P, Ling J, Mao T, Liu F, Zhou W, Zhang G, Xie F (2023) Adhesive and Flame-Retardant properties of Starch/Ca2 + gels with different amylose contents. Molecules 28(11):4543. https://doi.org/10.3390/molecules28114543


Lundgren M, Strandh V (2022) Navigating a double burden– floods and social vulnerability in local communities in rural Mozambique. Int J Disaster Risk Reduct 77:103023. https://doi.org/10.1016/j.ijdrr.2022.103023


Mbah EU, Nwankwo BC, Njoku DN, Gore MA (2019) Genotypic evaluation of twenty-eight high- and low-cyanide cassava in low-land tropics, southeast Nigeria. Heliyon 5(6):e01855. https://doi.org/10.1016/j.heliyon.2019.e01855


Mbinda W, Mukami A (2022) Breeding for postharvest physiological deterioration in cassava: problems and strategies. CABI Agric Bioscience 3(1):30. https://doi.org/10.1186/s43170-022-00097-4


Mediani A, Hamezah HS, Jam FA, Mahadi NF, Chan SXY, Rohani ER, Abas F (2022) A comprehensive review of drying meat products and the associated effects and changes. Front Nutr 9. https://doi.org/10.3389/fnut.2022.1057366


Mohamedali M, Reddy Maddika S, Vyas A, Iyer V, Cheriyath P (2014) Thyroid Disorders and Chronic Kidney Disease. International Journal of Nephrology, 2014, 1–6. https://doi.org/10.1155/2014/520281


Mohidin SRNSP, Moshawih S, Hermansyah A, Asmuni MI, Shafqat N, Ming LC (2023) Cassava (Manihot esculenta Crantz): a systematic review for the pharmacological activities, traditional uses, nutritional values, and Phytochemistry. J Evidence-Based Integr Med 28. https://doi.org/10.1177/2515690X231206227


Montagnac JA, Davis CR, Tanumihardjo SA (2009) Processing techniques to reduce toxicity and antinutrients of Cassava for Use as a staple food. Compr Rev Food Sci Food Saf 8(1):17–27. https://doi.org/10.1111/j.1541-4337.2008.00064.x


Morgan NK, Choct M (2016) Cassava: nutrient composition and nutritive value in poultry diets. Anim Nutr 2(4):253–261. https://doi.org/10.1016/j.aninu.2016.08.010


Nair G, Singh A, Zimniewska M, Raghavan V (2013) Comparative Evaluation of Physical and Structural Properties of Water Retted and non-retted Flax fibers. Fibers 1(3):59–69. https://doi.org/10.3390/fib1030059


Neela S, Fanta SW (2019) Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci Nutr 7(6):1920–1945. https://doi.org/10.1002/fsn3.1063


Nilusha RAT, Jayasinghe JMJK, Perera ODAN, Perera PIP, Jayasinghe CVL (2021) Proximate Composition, Physicochemical, Functional, and Antioxidant Properties of Flours from Selected Cassava (Manihot esculenta Crantz) Varieties. International Journal of Food Science, 2021, 1–13. https://doi.org/10.1155/2021/6064545


Njankouo Ndam Y, Mounjouenpou P, Kansci G, Kenfack MJ, Fotso Meguia MP, Ngono Eyenga N, Nyegue NS, A (2019) Influence of cultivars and processing methods on the cyanide contents of cassava (Manihot esculenta Crantz) and its traditional food products. Sci Afr 5:e00119. https://doi.org/10.1016/j.sciaf.2019.e00119


Nkhata SG, Ayua E, Kamau EH, Shingiro J-B (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6(8):2446–2458. https://doi.org/10.1002/fsn3.846


Noreen H, Semmar N, Farman M, McCullagh JSO (2017) Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac J Trop Med 10(8):792–801. https://doi.org/10.1016/j.apjtm.2017.07.024


Nti CA (2008) Household dietary practices and family nutritional status in rural Ghana. Nutr Res Pract 2(1):35. https://doi.org/10.4162/nrp.2008.2.1.35


Nwosu LC, Edo GI, Ozgor E (2022) The phytochemical, proximate, pharmacological, GC-MS analysis of Cyperus esculentus (Tiger nut): a fully validated approach in health, food and nutrition. Food Bioscience 101551. https://doi.org/10.1016/j.fbio.2022.101551


Obidiegwu JE, Lyons JB, Chilaka CA (2020) The Dioscorea Genus (Yam)—An Appraisal of Nutritional and therapeutic potentials. Foods 9(9):1304. https://doi.org/10.3390/foods9091304


Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, Olasanmi B, Fregene M (2013) Phenotypic approaches to drought in cassava: review. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00093


Olabiyi AA, Carvalho FB, Bottari NB, Morsch VM, Morel AF, Oboh G, Schetinger MR (2018) Tiger nut and walnut extracts modulate extracellular metabolism of ATP and adenosine through the NOS/cGMP/PKG signalling pathway in kidney slices. Phytomedicine 43:140–149. https://doi.org/10.1016/j.phymed.2018.04.035


Omede AA, Ahiwe EU, Zhu ZY, Fru-Nji F, Iji PA (2018) Improving Cassava Quality for Poultry Feeding Through Application of Biotechnology. In Cassava. InTech. https://doi.org/10.5772/intechopen.72236


Onyibe PN, Edo GI, Nwosu LC, Ozgor E (2021) Effects of vernonia Amygdalina fractionate on glutathione reductase and glutathione-S-transferase on alloxan induced diabetes wistar rat. Biocatal Agric Biotechnol 36:102118. https://doi.org/10.1016/j.bcab.2021.102118


Otekunrin OA, Sawicka B, Adeyonu AG, Otekunrin OA, Rachoń L (2021) Cocoyam [Colocasia esculenta (L.) Schott]: exploring the production, Health and Trade potentials in Sub-saharan Africa. Sustainability 13(8):4483. https://doi.org/10.3390/su13084483


Owheruo JO, Edo GI, Makia RS, Gaaz TS, Okolie MC, Nwaogu MU, Umar H (2024) Nutritional qualities of cookies made from wheat/cashew nut composite flour. Food Humanity 100452. https://doi.org/10.1016/j.foohum.2024.100452


Perera PIP, Quintero M, Dedicova B, Kularatne JDJS, Ceballos H (2013) Comparative morphology, biology and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). AoB Plants 5:pls046–pls046. https://doi.org/10.1093/aobpla/pls046


Quinn AA, Myrans H, Gleadow RM (2022) Cyanide content of Cassava Food products available in Australia. Foods 11(10):1384. https://doi.org/10.3390/foods11101384


Said Aki E, Salem A, W., Alessai J (2019) Toxicology in Emergency Medicine. In Essentials of Accident and Emergency Medicine. IntechOpen. https://doi.org/10.5772/intechopen.77011


Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2(1):6. https://doi.org/10.1186/s43014-020-0020-5


Samuel PO, Edo GI, Oloni GO, Ugbune U, Ezekiel GO, Essaghah AEA, Agbo JJ (2023) Effects of chemical contaminants on the ecology and evolution of organisms a review. Chem Ecol 1–37. https://doi.org/10.1080/02757540.2023.2284158


Samwel Muiruri K, Aliya Fathima A (2023) Advances in Cassava Trait Improvement and Processing Technologies for Food and Feed. In Cassava - Recent Updates on Food, Feed and Industry [Working Title]. IntechOpen. https://doi.org/10.5772/intechopen.110104


Scaria SS, Balasubramanian B, Meyyazhagan A, Gangwar J, Jaison JP, Kurian JT, Joseph KS (2024) Cassava (Manihot esculenta Crantz)—A potential source of phytochemicals, food, and nutrition—An updated review. EFood 5(1). https://doi.org/10.1002/efd2.127


Schmitt R (2014) Scanning Electron microscope. CIRP Encyclopedia of Production Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1085–1089. https://doi.org/10.1007/978-3-642-20617-7_6595


Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A (2021) Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11(10):428. https://doi.org/10.1007/s13205-021-02928-z


Stirk WA, Bálint P, Vambe M, Lovász C, Molnár Z, van Staden J, Ördög V (2020) Effect of cell disruption methods on the extraction of bioactive metabolites from microalgal biomass. J Biotechnol 307:35–43. https://doi.org/10.1016/j.jbiotec.2019.10.012


Sugishima M, Oda K, Ogura T, Sakamoto H, Noguchi M, Fukuyama K (2007) Alternative cyanide-binding modes to the haem iron in haem oxygenase. Acta Crystallogr Sect F Struct Biology Crystallization Commun 63(6):471–474. https://doi.org/10.1107/S174430910702475X


Tao H, Cui B, Zhang H, Bekhit AE-D, Lu F (2019) Identification and characterization of flavonoids compounds in cassava leaves (Manihot esculenta Crantz) by HPLC/FTICR-MS. Int J Food Prop 22(1):1134–1145. https://doi.org/10.1080/10942912.2019.1626879


Tejavathi DH, Sujatha BS, Karigar CS (2020) Physicochemical properties of starch obtained from Curcuma karnatakensis - a new botanical source for high amylose content. Heliyon 6(1):e03169. https://doi.org/10.1016/j.heliyon.2020.e03169


Thanyapanich N, Jimtaisong A, Rawdkuen S (2021) Functional properties of Banana Starch (Musa spp.) and its utilization in cosmetics. Molecules 26(12):3637. https://doi.org/10.3390/molecules26123637


Tshala-Katumbay DD, Ngombe NN, Okitundu D, David L, Westaway SK, Boivin MJ, Banea J (2016) Cyanide and the human brain: perspectives from a model of food (cassava) poisoning. Ann N Y Acad Sci 1378(1):50–57. https://doi.org/10.1111/nyas.13159


Waisundara VY (2018) Introductory Chapter: Cassava as a Staple Food. In Cassava. InTech. https://doi.org/10.5772/intechopen.70324


Wooding SP, Payahua CN (2022) Ethnobotanical Diversity of Cassava (Manihot esculenta Crantz) in the Peruvian Amazon. Diversity 14(4):252. https://doi.org/10.3390/d14040252


Yan H, Zhang Y, Ahmad MQ, Liu Y, Kou M, Ma M, Li Q (2022) Comparative Analysis of Anthocyanin Compositions and Starch Physiochemical Properties of Purple-Fleshed Sweetpotato Xuzishu8 in Desert regions of China. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.841969


Yulvianti M, Zidorn C (2021) Chemical Diversity of Plant Cyanogenic glycosides: an overview of reported Natural products. Molecules 26(3):719. https://doi.org/10.3390/molecules26030719


Zuhra K, Szabo C (2022) The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 289(9):2481–2515. https://doi.org/10.1111/febs.16135

 


Author Information


Faculty of Health Sciences, Department of Nursing, Cyprus International University, Nicosia, Turkey