*Article not assigned to an issue yet
Olatunji Oluwaseun E., Ogundele Seun B., Faloye Kolade O., Chinwuba Patricia E., Ojo Tunbi D., Ogunlowo Ifeoluwa I., Famuyiwa Samson O.
Keywords: n Acanthus montanus (Nees) T. Anderson, Acanthaceae, Mountain thistle plant, Whole plant, Verbascoside, Antiplasmodial
Malaria is one of the leading causes of death in Africa. This study investigated the antiplasmodial activities of hydroethanolic extract of Acanthus montanus (Nees) T. Anderson whole plant and isolated compound. Hydroethanolic extract of A. montanus whole plant obtained by percolation for 72 h at room temperature was fractionated using vacuum liquid chromatography, repeated accelerated gradient chromatography on silica gel and Sephadex LH 20 columns and recrystallization methods to afford Compound 1 which was elucidated by analysis of 1H-NMR, 13C-NMR, DEPT-135, COSY, HMQC, HMBC, and HRESIMS data and comparison with literature data. The antiplasmodial activity was carried out using a 4-day chemosuppresive and curative assays. The computational interaction of Compound 1 was investigated against Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) and Plasmepsin II. Spectra analysis revealed Compound 1 to be Verbascoside. The antiplasmodial activity of the crude extract, acetone fraction, and Compound 1 on early, and established malaria infections increases as the dose levels increase. The crude extract, and acetone fraction at a 400 mg/kg dose exhibited 37.83%, and 41.57% parasite suppression respectively, while Compound 1 at 5 and 10 mg/kg respectively showed 48.65% and 61.19% reduction of the parasitemia level of infected mice, as against chloroquine at 10 mg/kg with a chemosuppresive activity of 91% in the 4-day chemosuppresive test. In the curative test, 1, exhibited parasitemia clearance of 42.96% and 49.55% at 5 and 10 mg/kg respectively. The computational analysis showed that 1 elicited good binding energies against Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) (− 9.4 kcal/mol) and plasmepsin II (− 8.2 kcal/mol) as against chloroquine standard antimalarial drug with − 7.2 kcal/mol and − 6.4 kcal/mol respectively. This study showed that A. montanus and verbascoside have promising antiplasmodial activity, thereby justifying the ethnomedicinal use of the plant against malaria.
Abelian A, Dybek M, Wallach J, Gaye B, Adejare A (2021) Pharmaceutical chemistry. Remington. Academic Press, Cambridge, pp 105–128
Adamu M, Oshadu OD, Ogbaje CI (2010) Anthelminthic efficacy of aqueous extract of Acanthus montanus leaf against strongylid nematodes of small ruminants. Afr J Tradit Complement Altern Med 7(4):279–285. https://doi.org/10.4314/ajtcam.v7i4.56143. (Epub 2010 Jul 3. PMID: 21731157; PMCID: PMC3005400)
Adesida SA, Oguntimehin SA, Famuyiwa FG et al (2024) Larvicidal and antiplasmodial studies of Eucalyptus camaldulensis (Myrtaceae) Leaf. Adv in Tradit Med (ADTM). https://doi.org/10.1007/s13596-024-00765-y
Adeyemi OO, Okpo SO, Okpaka O (2004) The analgesic effect of the methanolic extract of Acanthus montanus. J Ethnopharmacol 90(1):45–48. https://doi.org/10.1016/j.jep.2003.09.021. (PMID: 14698507)
Amelo W, Nagpal P, Makonnen (2014) Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement Altern Med 14(1):462
Asongalem EA, Nana P, Foyet HS, Dimo T, Kamtchouing P (2008) Antifertility and fetotoxic activities of Acanthus montanus aqueous extract in Wistar rats. Methods Find Exp Clin Pharmacol 30(7):521–528. https://doi.org/10.1358/mf.2008.30.7.1254614. (PMID: 18985180)
Balogun E, Adebayo J, Zailani A, Kolawole O, Ademowo O (2010) Activity of ethanolic extract of Clerodendrum violaceum leaves against Plasmodium berghei in mice. Agric Biol J N Am 1(3):307–312
Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM (2017) World Malaria report: time to acknowledge Plasmodium knowlesi malaria. Malar J 16(1):1–3. https://doi.org/10.11186/s12936017-1787-y
Dawaki S, Hesham MA, Init I, Jamaiah I, Wahib MA, Awatif MA, Hany S, Fatiu N, Ado UA, Saadatu IY, Abdumhamid A, Mona AA, Lahvanya RS, Nabil AN, Yee-Ling L (2016) Is Nigeria winning the battle against malaria? prevalence, risk factors and KAP assessment among Hausa communities in Kano State. BMC Malar J 15:351
Derebe D, Wubetu M (2019) Antimalarial activity of hydroalcoholic root extract of Acanthus polystachyus Delile (Acanthaceae) against Plasmodium berghei–infected mice. J Evid-Based Integr Med. https://doi.org/10.1177/2515690X19885322
Haq I (2004) Safety of medicinal plants. Pak J Med Sci 43(4):203–210
Igwe A, Eleazu C (2017) Effect of processing on the biochemical contents of Acanthus montanus (Nees) T. Anderson (Acanthaceae) Leaves. Wiley Food Sci Nutr 6:388–394. https://doi.org/10.1002/fsn3.567
Igweze ZN, Amadi CN, Orisakwe OE (2019) Unsafe Herbal Sex enhancement supplements in Nigerian markets: a human risk assessment. Environ Sci Pollut Res Int 26(22):22522–22528. https://doi.org/10.1007/s11356-019-05511-5. (Epub 2019 Jun 3 PMID: 31161544)
Imran IZ, Elusiyan CA, Agbedahunsi JM, Omisore NO (2021) Bioactivity-directed evaluation of fruit of Kigelia africana (Lam.) Benth. used in the treatment of Malaria Iwo, Nigeria. J Ethnopharmacol 268:113680. https://doi.org/10.1016/j.jep.2020.113680
Jun Wu, Zhang Si, Xiao Q, Li Q, Huang J, Long L, Huang L (2003) Phenylethanoid and aliphatic alcohol from Acanthus illicifolius. Phytochemistry 63:491–495
Kanchanapoom T, Kasai R, Picheansoonthon C, Yamasaki K (2001) Megastigmane, aliphatic alcohol and benzoxazinoid glycosides from Acanthus ebracteatus. Phytochemistry 58:811–817
Kifle ZD, Atnafie SA (2020) Anti-oxidant potential and antimalarial effects of Acanthus polystachyus Delile (Acanthaceae) against Plasmodium berghei: Evidence for in vivo antimalarial activity. J Exp Pharmacol 12:575–587. https://doi.org/10.2147/JEP.S282407.PMID:33343202;PMCID:PMC7745718
Matos P, Figueirinha A, Paranhos A, Nunes F, Cruz P, Geraldes CFCG, Nunes MT, Batista MT (2018) Bioactivity of Acanthus mollis-contribution of benzoxazinoids and phenylpropanoids. J Ethnopharmacol 227:198–205. https://doi.org/10.1016/j.jep.2018.09013
Matos P, Batista MT, Figueirinha A (2022) A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). J Ethnopharmacol 15(293):115271. https://doi.org/10.1016/j.jep.2022.115271. (Epub 2022 Apr 14. PMID: 35430290)
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE (2020) Malaria parasite plasmepsins: more than just plain old degradative pepsins. J Biol Chem 295(25):8425–8441. https://doi.org/10.1074/jbc.REV120.009309. (Epub 2020 May 4. PMID: 32366462; PMCID: PMC7307202)
Noiarsa P, Ruchirawat S, Kanchanapoom T (2010) Acanmontanoside, a new phenylethanoid diglycoside from Acanthus montanus. Molecules 15:8967–8972. https://doi.org/10.3390/molecules15128967
Ogundele SB, Oriola AO, Oyedeji AO, Asiyanbola ID, Agbebi EA, Olubiyi OO, Olorunmola FO, Babalola K, Yusuf BA, Agbedahunsi JM (2023a) Antiplasmodial activities of chemical constituents of Artocarpus altilis (Parkinson F. A. Zorn) fosberg stem bark extract: an experimental-cum-computational investigation. Eur Chem Bull 12(10):11411–11436. https://doi.org/10.48047/ecb/2023.12.10.806
Ogundele SB, Oriola AO, Oyebola AO, Asiyanbola ID, Agbebi EA, Olubiyi OO, Olorunmola FO, Babalola K, Yusuf BA, Agbedahunsi JM (2023b) Antiplasmodial activities of chemical constituents of Artocarpus altilis (Parkinson F. A. Zorn) Fosberg stem bark extract: an experimental-cum-computational investigation. Eur Chem Bull 12(10):11411–11436. https://doi.org/10.48047/ecb/2023.12.10.806
Okoli CO, Akah PA, Onuoha NJ, Okoye TC, Nwoye AC, Nworu CS (2008) Acanthus montanus: an experimental evaluation of the antimicrobial, anti-inflammatory and immunological properties of a traditional remedy for furuncles. BMC Complement Altern Med 6(8):27. https://doi.org/10.1186/1472-6882-8-27.PMID:18538006;PMCID:PMC2453109
Olanlokun JO, Olotu AF, David OM, Idowu TO, Soliman EM, Olorunsogo OO (2019) A novel compound purified from Alstonia boonei inhibits Plasmodium falciparum lactate dehydrogenase and plasmepsin II. J Biomol Struct Dyn 37(8):2193–2200
Ryley J, Peters W (1970) The antimalarial activity of some quinoline esters. Ann Trop Med Parasitol 84:209–222
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
Wu J, Zhang S, Qiang X, Qingxin L, Jianshe H, Lijuan L, Liangmin H (2003) Phenylethanoids and aliphatic alcohols from glycosides from Acanthus ilicifolius. Phytochemistry 63:491–495. https://doi.org/10.1016/S0031-94229(03)00100-6
Faloye KO, Tripathi MK, Adesida SA, Oguntimehin SA, Oyetunde YM, Adewole AH, Ogunlowo II, Idowu EA, Olayemi, Dosumu OD (2023) Antimalarial potential, LC–MS secondary metabolite profiling and computational studies of Zingiber officinale. J Biomol Struct Dyn 1–16
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University,, Ile-Ife, Nigeria