Resistance induction in Vanilla planifolia Jacks. by foliar spray of salicylic acid (SA) against Fusarium oxysporum f. sp. vanillae

*Article not assigned to an issue yet

, , ,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-023-00740-z
First Page: 0
Last Page: 0
Views: 1303


Keywords: Fungi, Immune response, Orchid, Pathogen, Phytohormone


Abstract


Vanilla (Vanilla planifolia Jacks.) has a low genetic variability that makes it susceptible to Fusarium oxysporum f. sp. vanillae (Fov) as the main pathogen of this species and causes stem and root rot, which caused a decrease in productivity and fruit quality. Salicylic acid (SA) is a phytohormone that participates in the immune response of plants as an inducer of resistance against pathogens such as Fusarium. For what was proposed in this work, resistance was induced against Fov by foliar spraying with SA in greenhouse-grown vanilla seedlings. 10 cm long seedlings were sprayed with four concentrations of SA (0, 0.25, 0.5 and 1 mM) every third day for 1 month. To evaluate the induction of resistance, the plants were inoculated with 1.7 × 106 mL−1 spores, making 1 mm incision in the main root. At the end of 1-month trial, the effect of SA treatments on survival of the seedlings and severity of symptoms were evaluated. After 1 year, the resistant plants were kept under SA spray and reinoculated with new concentrations of spores (0, 1.7 × 104; 1.7 × 106 and 1.7 × 108 spores mL−1) to evaluate the stability of induced resistance. Three new groups of plants were established: G0 as resistant plants sprayed weekly with SA; G1 as resistant plants without SA spraying and G2 as mother plants. The results showed a stable level of resistance to Fov in the plants of G0 group that were maintained under weekly foliar spray with 1 mM of SA. These results are of interest in the genetic improvement of this species.


Fungi, Immune response, Orchid, Pathogen, Phytohormone


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Adame-García J, Rodríguez-Guerra R, Iglesias-Andreu LG, Ramos-Prado JM, Luna-Rodríguez M (2014) Molecular identification and pathogenic variation of Fusarium species isolated from Vanilla planifolia in Papantla Mexico. Bot Sci 93:669–678


Arya S, Rookes J, Cahill D, Lenka S (2021) Vanillin: a review on the therapeutic prospects of a popular flavoring molecule. Adv Trad Med 21:1–17. https://doi.org/10.1007/s13596-020-00531-w


Bawa G, Feng L, Yan L (2019) Pre-treatment of salicylic acid enhances resistance of soybean seedlings to Fusarium solani. Plant Mol Biol 101:315–323. https://doi.org/10.1007/s11103-019-00906-x


Castander-Olarieta A, Pereira C, Sales E, Meijón M, Arrillaga I, Cañal MJ, Montalbán IA (2020) Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes. Plants 9(12):1762. https://doi.org/10.3390/plants9121762


Castro-Bobadilla G, Martínez AJ, Martínez ML, García-Franco JG (2011) Aplicación de riego localizado para aumentar la retención de frutos de Vanilla planifolia en el Totonacapan, Veracruz, México. Agrociencia 45(3):281–291


Chen J, Clinton M, Qi G, Wang D, Liu F, Qing FuZ (2020) Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. J Exp Bot 71(17):5256–5268. https://doi.org/10.1093/jxb/eraa072


Datten R, Mandhaniya S, Rani A, Singh V (2022) Role of salicylic acid in plants to trade-off growth-immunity. Just Agric e-Newslett 2(12):1–4


Feng J, Zhang M, Yang K (2021) Salicylic acid-primed defense response in octoploid strawberry ‘Benihoppe’ leaves induces resistance against Podosphaera aphanis through the enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. BMC Plant Biol 20:149. https://doi.org/10.1186/s12870-020-02353-z


Gantiva E, Díez M, Moreno F (2020) Efecto de la interacción luz-agua sobre la fotosíntesis de la Vanilla planifolia (Orquidaceae). Rev Biol Trop 68(4):1250–1261. https://doi.org/10.15517/RBT.V68I4.41385


Hernández-Hernández J (2011) Vanilla diseases. In: Havkin-Frenkel D, Belange F (eds) Handbook of vanilla science and technology. Blackwell Publishing, Oxford, pp 16–40


Hernández-Martínez JL, Carranza-Álvarez C, Maldonado-Miranda JJ, Martínez-Soto D (2020) Isolation of Fusarium from vanilla plants grown in the Huasteca Potosina Mexico. Mex J Phytopathol 38:3. https://doi.org/10.18781/R.MEX.FIT.2004-4


Kalimuthu K, Senthilumar R, Murugalatha N (2006) Regeneration and mass multiplication of Vanilla planifolia Andr—a tropical orchid. Curr Sci 91:1401–1403


Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158(2):844–853. https://doi.org/10.1104/pp.111.187468


Ortega-Macareno LC, Iglesias-Andreu LG (2022) Stimulating effect of salicylic acid in the in vitro and in vivo culture of vanilla (Vanilla planifolia Jacks.). Agrivita J Agric Sci 44(1):48–54. https://doi.org/10.17503/agrivita.v44i1.3003


Ortega-Macareno L, Iglesias-Andreu L, Beltrán-Herrera JD, Ramírez-Mosqueda M (2016) Aislamiento y fusión de protoplatos de Vanilla planifolia Jacks ex. Andrews y Vanilla pompona Schiede. Rev Asoc Colomb Cienc Biol 1(28):16–24


Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56. https://doi.org/10.1016/j.envexpbot.2012.02.013


Pieterse C, Leon-Reyes A, Van der Ent S (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. https://doi.org/10.1038/nchembio.164


R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria


Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52(2):154–160. https://doi.org/10.1007/s11627-015-9735-4





Ramos-Castella AL, Iglesias-Andreu LG (2022) Avances y tendencias en mejoramiento genético de vainilla. Cienc Tecnol Agríc 23(2):2339. https://doi.org/10.21930/rcta.vol23_num2_art:2339


Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK (2003) Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res 158(3):203–213. https://doi.org/10.1078/0944-5013-00202


Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158(2):835–843. https://doi.org/10.1104/pp.111.191593


Soto-Arenas MA (2003) Vanilla. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, vol 3, Orchidoideae (Part 2) Vanilloideae. Oxford University Press, Oxford, pp 321–334


Tannuri L, Lopes E, Macedo R, Canedo E (2021) Exogenous application of salicylic acid to control coffee rust. Acta Sci Biol Sci 43(1):e54495. https://doi.org/10.4025/actascibiolsci.v43i1.54495


Thakur M, Sharma DR, Sharma SK (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. sp. dianthi. Plant Cell Rep 20:825–828. https://doi.org/10.1007/s00299-001-0412-1


Trontin JF, Raschke J, Rupps A (2021) Tree ‘memory’: new insights on temperature-induced priming effects during early embryogenesis. Tree Physiol 41(6):906–911. https://doi.org/10.1093/treephys/tpaa150





Xi D, Li X, Gao L, Zhang Z, Zhu Y, Zhu H (2021) Application of exogenous salicylic acid reduces disease severity of Plasmodiophora brassicae in pakchoi (Brassica campestris ssp. chinensis Makino). PLoS ONE 16(6):e0248648. https://doi.org/10.1371/journal.pone.0248648


Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol Plant-Microbe Interact 27(6):567–577. https://doi.org/10.1094/MPMI-11-13-0349-R


Ramos-Castellá AL, Iglesias-Andreu LG, Martínez-Castillo J, Ortíz-García M, Andueza-Noh RH, Octavio-Aguilar P, Luna-Rodríguez M (2017) Evaluation of molecular variability in germplasm of vanilla (Vanilla planifolia G. Jackson in Andrews) in Southeast Mexico: implications for genetic improvement and conservation. Plant Genet Resour 15(4):310–320. https://doi.org/10.1017/S1479262115000660


Pinaria AG, Laurence MH, Burgess LW, Liew, ECY (2015) Phylogeny and origin of Fusarium oxysporum f. sp. vanillae in Indonesia. Plant Pathol 64(6):1358–1365. https://doi.org/10.1111/ppa.12365


Khotimah K, Sulistyaningsih E, Wibowo A (2017) In vitro induced resistance of Fusarium wilt disease (Fusarium oxysporum f. sp. cepae) by salicylic acid in shallot CV ‘Bima Brebes.’. Ilmu Pertanian (Agricultural Science) 2(1):001–008. https://doi.org/10.22146/ipas.12840


El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS One 6(3):e17973. https://doi.org/10.1371/journal.pone.0017973

 


Acknowledgements


LCOM thanks the National Council for Science and Technology (CONACYT) for the doctorate scholarship (No. 627484) awarded.


Author Information


Ortega-Macareno Luis C.
Institute of Biotechnology and Applied Ecology (INBIOTECA), Veracruz University, Xalapa, Mexico

Iglesias-Andreu Lourdes G.
Institute of Biotechnology and Applied Ecology (INBIOTECA), Veracruz University, Xalapa, Mexico
liglesias@uv.mx

Luna-Rodríguez Mauricio
Faculty of Agricultural Sciences, Veracruz University, Circuito Universitario Gonzalo Aguirre Beltrán S/N Zona Universitaria, Xalapa, Mexico


Noa-Carrazana Juan C.
Institute of Biotechnology and Applied Ecology (INBIOTECA), Veracruz University, Xalapa, Mexico