Morphological and physiological responses of proliferating shoots of bamboo to cytokinin


Review Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-023-00593-6
First Page: 6
Last Page: 15
Views: 743


Keywords: Bamboo, Cytokinin, Growth regulators, Hyperhydricity, Morphology, Physiology, Shoot regeneration


Abstract


Successful in vitro propagation of bamboo is attractive for several purposes due to its versatility, high economic potential, and ability to achieve growth in a short time. Several researchers have studied nodal segment regeneration in bamboo species, and in vitro propagation by organogenesis is influenced by several factors, including explants, culture medium, and plant growth regulators of the culture medium. However, one of the most important factors for in vitro propagation is the type and concentration of cytokinin. Benzyladenines are the most commonly used cytokinin in regeneration systems, but their efficacy depends on genotype and other factors. Other cytokinin such as kinetin have also been investigated in several studies. However, these were found to be less active. The cytokinin used in the experiments may affect shoot morphology, resulting in morphological changes in explants. There are also interactions between factors related to in vitro culture conditions. This review discusses the role and efficacy of cytokinin in organogenesis and how this may relate to the observed morpho-physiological and biochemical changes.


Bamboo, Cytokinin, Growth regulators, Hyperhydricity, Morphology, Physiology, Shoot regeneration


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Anand M, Brar J (2013) In vitro propagation of an edible bamboo Bambusa bambos and assessment of clonal fidelity through molecular markers. J Med Bioeng 2(4):257–261. https://doi.org/10.12720/jomb.2.4.257-261


Beena D, Rathore T, Rao P (2012) Effects of Carbohydrates on in vitro axillary shoot initiation and multiplication of Bambusa pallida Munro. J Phytology 4(5):55–58. https://doi.org/10.4081/pb.2012.e6


Ċosiċ T, Motyka V, Raspor M, Savić J, Cingel A, Vinterhalter B, Ninković S (2015) In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): effects of genotype, explant type and applied Ck. Plant Cell Tissue and Organ Culture 121(3):741–760. https://doi.org/10.1007/s11240-015-0742-2


Chakrabarty D, Park S, Ali M, Shin K, Paek K (2006) Hyperhydricity in apple: ultrastuctural and physiological aspects. Tree Physiol 26(3):377–388. https://doi.org/10.1093/treephys/26.3.377


Choudhary A, Kumari P, Kumari S (2022) In vitro propagation of two commercially important bamboo species (Bambusa tulda Roxb. And Dendrocalamus stoCKii Munro.). Afr J Biotechnol 21(2):83–94. https://doi.org/10.5897/AJB2021.17437


Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmulling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell & Environment 42(3):998–1018. https://doi.org/10.1111/pce.13494


Cortleven A, Schmülling T (2015) Regulation of chloroplast development and function by cytokinin. J Exp Bot 66(16):4999–5013. https://doi.org/10.1093/jxb/erv132


Desai P, Desai S, Patel A, Mankad M, Gajera B, Patil G, Narayanan S (2019) Development of efficient micropropagation protocol through axillary shoot proliferation for Bambusa vulgaris ‘wamin’and Bambusa bambos and assessment of clonal fidelity of the micropropagated plants through Random amplified polymorphic DNA markers. Agric Nat Resour 53(1):26–32. https://doi.org/10.34044/j.anres.2019.53.1.04


Diab E, Mohamed S (2008) In vitro Morphogenesis and plant regeneration of bamboos (Oxytenanthera)


International Journal ofSustainable Crop Production. 3(6):72–79


Dobránszki J, Mendler-Drienyovszki N (2014) Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J Plant Physiol 171(16):1472–1478. https://doi.org/10.1016/j.jplph.2014.06.015


Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan R (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. https://doi.org/10.1016/j.tplants.2011.08.004


Furlan F, Gavilan N, Zorz A, de Oliveira L, Konzen E, Brondani G (2018) Active chlorine and charcoal affect the in vitro culture of Bambusa vulgaris. Bosque 39(1):61–70. https://doi.org/10.4067/S0717-92002018000100061


Gamborg O, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Experimental cell research 50(1):151–158. https://doi.org/10.1016/0014-4827(68)90403-5


García-Ramírez Y (2021) Obtención de plantas de Bambusa vulgaris Schrad. ex Wendl con calidad morfo-fisiológica en medio de cultivo líquido (Doctoral dissertation, Universidad Central “Marta Abreu” de Las Villas) pp 60–90


García-Ramírez Y, Seijo M, González M, Capó Y, Suárez M, Ribalta O, Cabrera A (2020) Alternativas para la propagación de Bambusa vulgaris Schard, vol 10. ex Wendl. Anales de la Academia de Ciencias de Cuba, p 823. 3


García-Ramírez Y, Gonzáles M, Mendoza E, Seijo M, Cárdenas M, Moreno-Bermúdez L, Ribalta O (2014) Effect of BA treatments on morphology and physiology of proliferated shoots of Bambusa vulgaris Schrad. Ex Wendl in temporary immersion. Am J Plant Sci. https://doi.org/10.4236/ajps.2014.52027


González González M (2013) Multiplicación in vitro de brotes de Bambusa vulgaris Schrader ex Wendland en medio de cultivos líquidos (Tesis de maestría, Universidad Central “Marta Abreu” de Las Villas, Instituto de Biotecnología de las Plantas), pp 13–54


Hazarika B (2006) Morpho-physiological disorders in vitro culture of plants. Scientia Horticulturae 108(2):105–120. https://doi.org/10.1016/j.scienta.2006.01.038


Hnatuszko-Konka K, Gerszberg A, Weremczuk-Jeżyna I, Grzegorczyk-Karolak I (2021) Cytokinin signaling and de novo shoot organogenesis. Genes 12(2):265. https://doi.org/10.3390/genes12020265


Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K (2018) Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci 19(12):4045. https://doi.org/10.3390/ijms19124045


Ivanova M, Van Staden J (2009) Nitrogen source, concentration, and NH4+: NO3– ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Planr Cell Tissue Organ Cult 99(2):167–174. https://doi.org/10.1007/s11240-010-9794-5


Jiménez V, Holst A, Carvajal-Campos P, Guevara E (2021) Standard protocols for in Vitro propagation of bamboo with emphasis on Axillary shoot proliferation. Biotechnological advances in Bamboo. Springer, Singapore, pp 63–84. https://doi.org/10.1007/978-981-16-1310-4_3


Jiménez V, Castillo J, Tavares E, Guevara E, Montiel M (2006) In vitro propagation of the neotropical giant bamboo, Guadua angustifolia Kunth, through axillary shoot proliferation. Planr Cell Tissue Organ Cult 86(3):389–395. https://doi.org/10.1007/s11240-006-9120-4


Kumudini B, Patil S (2019) Role of plant hormones in improving photosynthesis. Photosynthesis, Productivity and Environmental Stress. 215–240. https://doi.org/10.1002/9781119501800.ch11


Kopečný D, Končitíková R, Popelka H, Briozzo P, Vigouroux A, Kopečná M, Zalabák D, Šebela M, Skopalová J, Frébort I, Moréra S (2016) Kinetic and structural investigation of the cytokinin oxidase/dehydrogenase active site. FEBS J 283:361–377. https://doi.org/10.1111/febs.13581


Leão J, da Silva A, Sampaio P, Raposo A (2022) In vitro multiplication of woody bamboo in the Southwestern Amazon, Acre State, Brazil. Research, Society and Development. 11:1–7. https://doi.org/10.33448/rsd-v11i9.31099. 9


Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. Plant cell culture protocols. 3–13. https://doi.org/10.1007/978-1-4939-8594-4_1


Maiya S, Janardan L, Gauchan D (2021) The impact of various factors of in vitro culture on shoot multiplication and plant production of the Bambusa nutans subsp. cupulata in in vitro propagation through nodal segments. Int J Res Anal Reviews 8(1):1–12


Martins J, Rodrigues L, Silva T, Gontijo A, Falqueto A (2020) Modulation of the anatomical and physiological responses of in vitro grown Alcantarea imperialis induced by NAA and residual effects of BAP. Ornam Hortic 26:283–297. https://doi.org/10.1590/2447-536X.v26i2.2138


Martins J, Santos E, Rodrigues L, Gontijo A, Falqueto A (2018) Effects of 6-benzylaminopurine on photosystem II functionality and leaf anatomy of in vitro cultivated Aechmea blanchetiana. Biol Plant 62(4):793–800. https://doi.org/10.1007/s10535-018-0822-3


Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K (2008) Ck are central regulators of cambial activity. Proceedings of the National Academy of Sciences of United States of America. 105, 20027–20031. https://doi.org/10.1073/pnas.0805619105


Mishra Y, Mishra J, Mitra M (2022) Acceleration of micropropagation procedure of Bambusa nutans: a commercially important bamboo species. Int J Sci Res Archive 05(01):079–085. https://doi.org/10.30574/ijsra.2022.5.1.0032


Mudoi K, Saikia S, Goswami A, Gogoi A, Bora D, Borthakur M (2013) Micropropagation of important bamboos: a review. Afr J Biotechnol 12(20):2770–2785. https://doi.org/10.5897/AJB12.2122


Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiolgia Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x


Mustafa A, Derise M, Yong W, Rodrigues K (2021) A concise review of Dendrocalamus asper and related bamboos: germplasm conservation, propagation and molecular biology. Plants 10(9):1897. https://doi.org/10.3390/plants10091897


Negi D, Saxena S (2011b) In vitro propagation of Bambusa nutans Wall. Ex Munro through axillary shoot proliferation. Plant Biotechnol Rep 5(1):35–43. https://doi.org/10.1007/s11816-010-0154-z


Negi D, Saxena S (2011a) Micropropagation of Bambusa balcooa Roxb. through axillary shoot proliferation. In Vitro Cellular & Developmental Biology-Plant. 47(5): 604–610. https://doi.org/10.1007/s11627-011-9403-2


Nitsch J, Nitsch C (1969) Haploid plant from pollen grains. Science 163:85–87. https://doi.org/10.1126/science.163.3862.85


Nogueira J, Gomes H, Scherwinski-Pereira J (2019) Micropropagação, estimativa da produção de mudas e análise da fidelidade genética baseada em marcadores ISSR de Guadua magna e G. angustifolia. Pesquisa Agropecuária Tropical 49(e53743):1–9. https://doi.org/10.1590/1983-40632019v4953743


Nurhayani S, Megia R, Purnamaningsih R (2018) In vitro propagation of Bambusa balcooa as alternative material of wood. Biosaintifika: Journal of Biology & Biology Education. 10(1): 198–204. https://doi.org/10.15294/biosaintifika.v10i1.11079


Ornellas TS, Werner D, Holderbaum DF, Scherer RF, Guerra MP (2015) Effects of Vitrofural, BAP and meta-Topolin in the in vitro culture of Dendrocalamus asper. In VI International Symposium on Production and Establishment of Micropropagated Plants 1155 (pp. 285–292). https://doi.org/10.17660/ActaHortic.2017.1155.41


Pandey V, Bhatt I, Nandi S (2019) Role and regulation of auxin signaling in abiotic stress tolerance. In Plant signaling molecules (pp. 319–331). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-816451-8.00019-8


Quiala E, Cañal M, Meijón M, Rodríguez R, Chávez M, Valledor L, Barbón R (2012) Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell Tissue and Organ Culture 109(2):223–234. https://doi.org/10.1007/s11240-011-0088-3


Rajput B, Jani M, Ramesh K, Manokari M, Jogam P, Allini V, Shekhawat M (2020) Large-scale clonal propagation of Bambusa balcooa Roxb: an industrially important bamboo species. Industrial Crops and Products 157:112905. https://doi.org/10.1016/j.indcrop.2020.112905


Rajput B, Minal D, Kumar K, Manokari M, Shekhawat M (2019) An Improved Micropropagation Protocol for Manga Bamboo - Pseudoxytenanthera stoCKii (Munro) T.Q. Nguyen. World News of Natural Sciences 25:141–154


Rajput B, Minal D, Gujjar M, Shekhawat M (2019a) Effective and Large Scale In vitro Propagation of Dendrocalamus strictus (Roxb.) Nees using Nodal Segments as Explants. World News of Natural Sciences. 130: 238–249


Raju R, Roy S (2016) Mass propagation of Bambusa bambos (L.) Voss through in vitro culture. Jahangirnagar Univ J Biol Sci 5(2):15–26


Ramanayake S, Meemaduma V, Weerawardene T (2006) In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Scientia Horticulturae 110:109–113. https://doi.org/10.1016/j.scienta.2006.06.016


Ramakrishnan M, Yrjälä K, Vinod K, Sharma A, Cho J, Satheesh V, Zhou M (2020) Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Security 9(4):e229. https://doi.org/10.1002/fes3.229


Raspor M, Motyka V, Ninković S, Dobrev PI, Malbeck J, Ćosić T, Dragićević I (2020) Endogenous levels of ck, indole-3-acetic acid and abscisic acid in in vitro grown potato: a contribution to potato hormonomics. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-60412-9


Rosa W, Martins J, Rodrigues E, de Almeida Rodrigues L, Gontijo A, Falqueto A (2018) Photosynthetic apparatus performance in function of the Ck used during the in vitro multiplication of Aechmea blanchetiana (Bromeliaceae). Plant Cell Tissue Organ Cult 133(3):339–350. https://doi.org/10.1007/s11240-018-1385-x


Sandhu M, Wani S, Jiménez V (2018) In vitro propagation of bamboo species through axillary shoot proliferation: a review. Plant Cell, Tissue and Organ Culture. 132(1): 27–53. https://doi.org/10.1007/s11240-017-1325-1


Sang Y, Cheng Z, Zhang X (2018) Plant stem cells and de novo organogenesis. New Phytologist 218(4):1334–1339. https://doi.org/10.1111/nph.15106


Sankar V, Muralidharan E (2017) Meta-topolin overcomes seasonal dormancy and enhances in vitro axillary shoot proliferation in nodal explants of Pseudoxytenanthera ritcheyia commercially valuable bamboo. J Bamboo Rattan 16(4):147–160


Satyam B, Bebija L, Goswami P, Hazarika I (2018) Improved clonal propagation of superior Dendrocalamus hamiltonii nees germplasm through in vitro techniques. Global J Bio-Sciences Biotechnol 7(4):537–542


Schenk R, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. https://doi.org/10.1139/b72-026


Singh S, Singh R, Kalia S, Dalal S, Dhawan A, Kalia R (2013) Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo—a plant with extraordinary qualities. Physiol Mol Biology Plants 19(1):21–41. https://doi.org/10.1007/s12298-012-0147-1


Suwal M, Lamichhane J, Gauchan D (2020) Regeneration technique of bamboo species through nodal segments: a review. Nepal J Biotechnol 8(1):54–68. https://doi.org/10.3126/njb.v8i1.30209


Sharma S, Kalia S, Kalia R (2012) Rapid In-Vitro Regeneration from 40-Year-old Clump of Bambusa nutans wall. Ex Munro. The Journal of Indian Botanical Society. 91(4): 365–378


Tian X, Ruan J, Huang J, Yang C, Fang X, Chen Z, Chen X (2018) Characterization of gossypol biosynthetic pathway. Proceedings of the National Academy of Sciences. 115(23): E5410-E5418. https://doi.org/10.1073/pnas.1805085115


Tikendra L, Dey A, Jamir I, Sahoo M, Nongdam P (2022) Cytokinin influence on in vitro shoot induction and genetic stability assessment of Dendrocalamus latiflorus Munro: a commercially important bamboo in Manipur, North-East India. Vegetos. 1–11. https://doi.org/10.1007/s42535-022-00392-5


Thapa N, Gauchan D, Suwal M, Bhuju S, Upreti A, Byanju B, Lamichhane J (2018) In vitro assessment of Bambusa balcooa Roxb. For micropropagation. J Emerg Technol Innovative Res 5:12


Tu M, Wang W, Yao N, Cai C, Liu Y, Lin C, Zhu Q (2021) The transcriptional dynamics during de novo shoot organogenesis of Ma bamboo (Dendrocalamus latiflorus Munro): implication of the contributions of the abiotic stress response in this process. Plant J 107(5):1513–1532. https://doi.org/10.1111/tpj.15398




 


Acknowledgements


The author is grateful to Dr. Marcelo Francisco Pompelli and MSc. Luis Alfonso Rodríguez-Páez for their skilled technical assistance. Also, thanks to the anonymous reviewer(s) and the editor of this article for their critical comments and suggestions on the manuscript.


Author Information


García-Ramírez Yudith
Instituto de Biotecnología de las Plantas, Universidad Central ‘Marta Abreu’ de Las Villas, Santa Clara, Cuba
yudithyanet@gmail.com