Impact of autochthonous biostimulants on bioactive compounds of date palm vitroplants under salt stress


Research Articles | Published:

DOI: 10.1007/s42535-024-00976-3
First Page: 1906
Last Page: 1919
Views: 2188

Keywords: Salinity tolerance, Microorganisms, Compost, Bioactive compounds, n Phoenix dactylifera L


Abstract


In arid and semi-arid areas, the date palm (Phoenix dactylifera L.), plays an important socio-economic role. Nevertheless, in recent years, the whole world has been subject to severe climate change, which is having a negative impact on plant growth, physiology and production, particularly through increased soil and water salinity.. The present study was carried out to evaluate the response of date palm vitroplants to salinity and examine the possible roles of a native and exotic arbuscular mycorrhizal fungus (AMF1 and AMF2, respectively), plant growth-promoting rhizobacteria (PGPR) and compost in improving salt tolerance. Plants were grown under non-saline and saline conditions (0 and 300 mM NaCl) with and without application of the tested biostimulants alone or in dual or in triple combination. Plant growth parameters, including plant height and plant dry biomass, were negatively affected by salinity. However, plants treated with biostimulants showed higher growth parameters and greater biosynthesis of bioactive compounds such as total polyphenols and flavonoids concentration under saline conditions, compared to the untreated plants.. In addition, salt stress caused high lipid peroxidation and increased hydrogen peroxide (H2O2) concentration. However, the application of biostimulants reduced both parameters in salt-affected plants. The best reductions in stress markers (malondialdehyde MDA and H2O2) 57% and 55% and 51% and 49% were recorded in plants treated respectively with the two triple combinations PGPR + AMF1 + Comp and PGPR + AMF2 + Comp. Lastly, the results indicated the application of biostimulants and especially their combination as an efficient practice to improve growth and development of date palm.

Salinity tolerance, Microorganisms, Compost, Bioactive compounds, n                     Phoenix dactylifera L


References


Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, Malik Z, Parveen (2016) Druskos sukelto streso pasireiškimas augalams, tolerancijos druskingumui mechanizmas ir kalio įtaka mažinant druskos sukeltą stresą: Apžvalga. Zemdirbyste 103:229–238


Abd El-Mageed TA, El-Sherif AMA, Abd El-Mageed SA, Abdou NM (2019) A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agric Water Manag 226:105831


Ait-El-Mokhtar M, Ben LR, Anli M, Boutasknit A, Wahbi S, Meddich A (2019) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic (amsterdam) 253:429–438


Ait-El-Mokhtar M, Baslam M, Ben-Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A (2020a) Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L) by the application of arbuscular mycorrhizal fungi and/or compost. Front Sustain Food Syst 4:131


Ait-El-Mokhtar M, Fakhech A, Anli M, Ben-Laouane R, Boutasknit A, Wahbi S, Meddich A (2020b) Infectivity of the palm groves arbuscular mycorrhizal fungi under arid and semi-arid climate and its edaphic determinants towards efficient ecological restoration. Rhizosphere 15:100220


Al Juhaimi F, Özcan MM, Uslu N, Ghafoor K, Babiker EE, Mohamed Ahmed IA (2020) Bioactive properties, fatty acid compositions, and phenolic compounds of some date palm (Phoenix dactylifera L) cultivars. J Food Process Preserv 44(5):e14432


Alahyane A, Harrak H, Ayour J, Elateri I, Ait-Oubahou A, Benichou M (2019) Bioactive ompounds and antioxidant activity of seventeen Moroccan Date varieties and clones (Phoenix dactylifera L.) south African. J Bot 121:402–409. https://doi.org/10.1016/j.sajb.2018.12.004


Al-Farsi MA, Lee CY (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108:977–985


Alizadeh S, Fallahi Gharagoz S, Pourakbar L, Siavash Moghaddam S, Jamalomidi M (2021) Arbuscular mycorrhizal fungi alleviate salinity stress and alter phenolic compounds of Moldavian balm. Rhizosphere 19:100417


Al-Okbi SY (2022) Date palm as source of nutraceuticals for health promotion: a review. Curr Nutr Rep 11(4):574–591


Al-Orf SM (2012) The prevalence of diabetes mellitus in elderly females living in Riyadh Social Welfare Home. World Appl Sci J 17:1020–1025


Amanifar S, Toghranegar Z (2020) The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L and enhancing valerenic acid accumulation under salinity stress. Ind Crops Prod 147:112234


Anli M, Symanczik S, El Abbassi A, Ait-El-Mokhtar M, Boutasknit A, Ben-Laouane R, Toubali S, Baslam M, Mäder P, Hafidi M, Meddich A (2021) Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss.’ Plant Biosyst Int J Deal All Asp Plant Biol 155:763–771


Arias E, Hodder AJ, Oihabi A (2016) FAO support to date palm development around the world: 70 years of activity. Emirates J Food Agric 28:1–11. https://doi.org/10.9755/ejfa.2015-10-840


Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK (2011) A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 44:1812–1822


Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á (2020) Photosynthesis in a changing global climate: scaling up and scaling down in crops. Front Plant Sci 11:1–29


Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15


Ben Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago Sativa to salt stress. Gesunde Pflanz 71:135–146


Ben-Laouane R, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait Rahou Y, Raklami A, Oufdou K, Wahbi S, Meddich A (2020a) Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanz.


Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383. https://doi.org/10.1146/annurev.micro.091208.073504


Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Douira A, El Modafar C, Mitsui T, Wahbi S, Meddich A (2020) Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L) ecotypes by regulating stomatal, water relations, and (In)organic adjustments. Plants 9:80


Duc NH, Vo AT, Haddidi I, Daood H, Posta K (2021) Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant eclipta prostrata (L) and induce major changes in polyphenol profiles under salt stresses. Front Plant Sci 11:2209


FAOSTAT Food and Agriculture Organization of the United Nations Statistics Division. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 24 April 2019).


Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28


Gros-Balthazard M, Newton C, Ivorra S, MargaretaTengberg, Pintaud J-C, Terral J-F (2013) Origines et domestication du palmier dattier (Phoenix dactylifera L.) Origins and Domestication of Date Palm (Phoenix dactylifera L.). The state of the art and the study perspectives. Rev d’ethnoécologie 0–15.


Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736


Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W (2021) Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicol Environ Saf 212:111996


Harley PC, Loreto F, Di MG, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436


Ho TTK, Tra VT, Le TH, Nguyen NKQ, Tran CS, Nguyen PT, Vo TDH, Thai VN, Bui XT (2022) Compost to improve sustainable soil cultivation and crop productivity. Case Stud Chem Environ Eng 6:100211


Hosseinzadeh SR, Amiri H, Ismaili A (2016) Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 54:87–92


Hussain MI, Farooq M, Syed QA (2020) Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L)–A review. Food Biosci 34:100509


Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239


Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128


Meddich A, El Mokhtar MA, Wahbi S, Boumezzough A (2017) Évaluation des potentialités mycorhizogènes en lien avec les paramètres physico-chimiques des sols de palmeraies du Maroc (Marrakech et Tafilalet). Cah Agric 26:.


Meddich A, Ait El Mokhtar M, Bourzik W, Mitsui T, Baslam M, Hafidi M (2018) Optimizing Growth and Tolerance of Date Palm (Phoenix dactylifera L.) to Drought, Salinity, and Vascular Fusarium-Induced Wilt (Fusarium oxysporum) by Application of Arbuscular Mycorrhizal Fungi (AMF). 239–258.


Meddich A, Oufdou K, Boutasknit A, Raklami A, Tahiri A, Ben-Laouane R, Ait-El-Mokhtar M, Anli M, Mitsui T, Wahbi S, Baslam M (2019) Use of organic and biological fertilizers as strategies to improve crop biomass, yields and physicochemical parameters of soil.


Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410


Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi A Review. Agron Sustain Dev 32:181–200


Qadir A, Shakeel F, Ali A, Faiyazuddin M (2020) Phytotherapeutic potential and pharmaceutical impact of Phoenix dactylifera (date palm): current research and future prospects. J Food Sci Technol 57:1191–1204


Qiang-Sheng W, Ying-Ning Z (2017) Arbuscular mycorrhizas and stress tolerance of plants. Arbuscular Mycorrhizas Stress Toler Plants. https://doi.org/10.1007/978-981-10-4115-0


Rafik A, Ibouh H, El FAEA, Eddahby L, Mezzane D, Bousfoul M, Amazirh A, Ouhamdouch S, Bahir M, Gourfi A, Dhiba D, Chehbouni A (2022) Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sens 14:2


Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1–11


Ren CG, Kong CC, Yan K, Xie ZH (2019) Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity. Sci Rep 9:1–9


Singleton V, Rossi J Jr, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 2:144–158


Siracusa L, Gresta F, Sperlinga E, Ruberto G (2017) Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J Food Compos Anal 62:1–7


Tartoura KAH, Youssef SA, Tartoura ESAA (2014) Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regul 74:299–310


Toubali S, Tahiri A, Anli M, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Oufdou K, Ait-Rahou Y, Ben-Ahmed H, Jemo M, Hafidi M, Meddich A (2020) Physiological and biochemical behaviors of date palm vitroplants treated with microbial consortia and compost in response to salt stress. Appl Sci 10:8665


Toubali S, Ait-El-Mokhtar M, Boutasknit A, Anli M, Ait-Rahou Y, Benaffari W, Ben-Ahmed H, Mitsui T, Baslam M, Meddich A (2022) Root reinforcement improved performance, productivity, and grain bioactive quality of field-Droughted quinoa (Chenopodium quinoa). Front Plant Sci 13:2


Trouvelot A, Kough J.L, Gianinazzi V (1986) Mesure de taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Physiological and Genetic Aspects of Mycorhizical.


Upadhyay S, Dixit M (2015) Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev. https://doi.org/10.1155/2015/504253


Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66


Vo AT, Haddidi I, Daood H, Mayer Z, Posta K (2019) Impact of arbuscular mycorrhizal inoculation and growth substrate on biomass and content of polyphenols in eclipta prostrata. HortScience 54:1976–1983


Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223


Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen JG, Muchero W (2018) Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front Plant Sci 9:1–9


Zhang F, Zou Y, Wu Q (2018) Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci Hortic (amsterdam) 229:132–136

 


Author Information


Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), Physiology of Abiotic Stresses Team, Cadi Ayyad University, Marrakesh, Morocco