Keywords: COVID-19, Drug discovery, PLpro, Endophytic fungi, Bioactive compounds, Molecular coupling
With ongoing research on endophytic fungi and their applications in the pharmaceutical industry due to the presence of various bioactive compounds, they can be used as a potential source against the papain-like protease enzyme (PLpro) of SARS-CoV-2. Compounds were selected based on previous in vitro studies on antiviral activity and thus repurposed for SARS-CoV-2. Ligands were evaluated for their adsorption, distribution, metabolism, and excretion (ADME) properties. Ligands that can meet the Lipinski rule of 5 were further selected for molecular docking studies using the AutoDock Vina molecular docking software AutoDock Vina. Of the 18 phytochemicals bound to PLpro, the top five compounds showed an excellent binding affinity with values between -7.5 kcal/mol and -8.5 kcal / mol, that is, Neosartoryadin A, Talaromyolide D, Acetylstachyflin, Chermisinone B, and Podophyllotoxin. Among them, Neosartoryadin A showed the least binding energy of -8.5 kcal/mol with the highest ability to bind tightly at the protein’s active site and making the target dysfunctional. Therefore, it should be considered for further in vitro analysis against the SARS-CoV-2 PLpro enzyme.
Agrawal N, Pathak S, Goyal A (2022) Potential papain-like protease inhibitors against COVID-19: a Comprehensive in Silico Based Review. Comb Chem High Throughput Screen 25(11):1838–1858
Báez-Santos YM, Barraza SJ, Wilson MW, Agius MP, Mielech AM, Davis NM, Baker SC, Larsen SD, Mesecar AD (2014) X-ray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J Med Chem 57(6):2393–2412. https://doi.org/10.1021/jm401712t
Báez-Santos YM, John St, S. E., Mesecar AD (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115:21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
Bhatia KS, Garg S, Anand A, Roy A (2021) Evaluation of different phytochemicals against BRCA2 receptor. Biointerface Res Appl Chem 12(2):1670–1681
Bosken YK, Cholko T, Lou YC, Wu KP, Chang CEA (2020) Insights into Dynamics of inhibitor and Ubiquitin-Like protein binding in SARS-CoV-2 Papain-Like protease. Front Mol Biosci 7. https://doi.org/10.3389/fmolb.2020.00174
Cao X, Shi Y, Wu X, Wang K, Huang S, Sun H, Dickschat JS, Wu B (2019) Talaromyolides A–D and talaromytin: polycyclic meroterpenoids from the Fungus Talaromyces sp. CX11. Org Lett 21(16):6539–6542. https://doi.org/10.1021/acs.orglett.9b02466
Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC (2010) Deubiquitinating and Interferon antagonism activities of Coronavirus Papain-Like Proteases. J Virol 84(9):4619–4629. https://doi.org/10.1128/jvi.02406-09
Coronavirus disease (COVID-19). (2021, June 10). WHO. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Davison EK, Brimble MA (2019) Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol 52:1–8. https://doi.org/10.1016/j.cbpa.2018.12.007
de Almeida RB, Barbosa DB, Bomfim do, Amparo MR, Andrade JA, Costa BS, Botura SL, M. B (2023) Identification of a novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase: in vitro and in silico studies. Pharmaceuticals 16(1):95
Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336. https://doi.org/10.3390/metabo2020303
Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 69, 1121–112410.1021/np060174
Garg S, Roy A (2020) In silico analysis of selected alkaloids against main protease (Mpro) of SARS-CoV-2. Chemico-Biol Interact 332:109309
Garg S, Anand A, Lamba Y, Roy A (2020) Molecular docking analysis of selected phytochemicals against SARS-CoV-2 M pro receptor. Vegetos 33(4):766–781
Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbì L, Girardis M, …, Mussini C (2020) Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2(8):e474–e484. https://doi.org/10.1016/S2665-9913(20)30173-9
Hilgenfeld R (2014) From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281(18):4085–4096. https://doi.org/10.1111/febs.12936
Kour A, Shawl A, Rehman S, Sultan P, Qazi P, Suden P et al (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology 24, 1115–112110.1007/s11274-007-9582-5
Lescure FX, Honda H, Fowler RA, Lazar JS, Shi G, Wung P, Patel N, Hagino O, Bazzalo IJ, Casas MM, Nuñez SA, Pere Y, Ibarrola CM, Aramayo S, Cuesta MA, Duarte MC, Fernandez AEG, Iannantuono PM, Miyazaki MA, Vizcarra EA, P (2021) Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Respiratory Medicine 9(5):522–532. https://doi.org/10.1016/s2213-2600(21)00099-0
Lin X, Li X, Lin X (2020) A review on applications of computational methods in drug screening and design. Molecules 25(6):1375
March-Vila E, Pinzi L, Sturm N, Tinivella A, Engkvist O, Chen H, Rastelli G (2017) On the integration of in Silico Drug Design Methods for Drug Repurposing. Front Pharmacol 8. https://doi.org/10.3389/fphar.2017.00298
Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC (2014) MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology 450–451. https://doi.org/10.1016/j.virol.2013.11.040
Minagawa K, Kouzuki S, Yoshimoto J, Kawamura Y, Tani H, Iwata T, Terui Y, Nakai H, Hattori YAGIS, Fujiwara N, T., Kamigauchi T (2002) Stachyflin and Acetylstachyflin, Novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. I. isolation, structure elucidation and Biological Activities. J Antibiot 55(2):155–164. https://doi.org/10.7164/antibiotics.55.155
Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, …, Dikic I (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587(7835):657–662. https://doi.org/10.1038/s41586-020-2601-5
Murthy TK, Joshi T, Gunnan S, Kulkarni N, Priyanka V, Kumar SB, Gowrishankar BS (2021) In silico analysis of Phyllanthus amarus phytochemicals as potent drugs against SARS-CoV-2 main protease. Curr Res Green Sustainable Chem 4:100159. https://doi.org/10.1016/j.crgsc.2021.100159
Nitulescu G, Paunescu H, Moschos S, Petrakis D, Nitulescu G, Ion G, Spandidos D, Nikolouzakis T, Drakoulis N, Tsatsakis A (2020) Comprehensive analysis of drugs to treat SARSCoV-2 infection: mechanistic insights into current COVID-19 therapies (review). Int J Mol Med 46(2):467–488. https://doi.org/10.3892/ijmm.2020.4608
Omeje EO, Ahomafor JE, Onyekaba TU, Monioro PO, Nneka I, Onyeloni S, Chime C, Eboka JC (2017) Endophytic Fungi as Alternative and Reliable sources for potent Anticancer Agents. Natural Products and Cancer Drug Discovery. https://doi.org/10.5772/67797. Published
Pal S, Mondal S, Das G, Khatua S, Ghosh Z (2020) Big data in biology: the hope and present-day challenges in it. Gene Rep 21:100869. https://doi.org/10.1016/j.genrep.2020.100869
Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC (2020) Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 Papain-Like protease: in silico Molecular Docking Studies and in vitro enzymatic activity assay. Front Chem 8. https://doi.org/10.3389/fchem.2020.623971
Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S, Chaudhuri R, Fu W, Prabhakar BS, Johnson ME, Baker SC, Ghosh AK, Mesecar AD (2008) A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci 105(42):16119–16124. https://doi.org/10.1073/pnas.0805240105
Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, el Oualid F, Huang TT, Bekes M, Drag M, Olsen SK (2020) Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: a framework for anti–COVID-19 drug design. Sci Adv 6(42). https://doi.org/10.1126/sciadv.abd4596
Selim K (2012) Biology of Endophytic Fungi. Curr Res Environ Appl Mycol 2(1):31–82. https://doi.org/10.5943/cream/2/1/3
Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G (2012) Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem 58:431–440. https://doi.org/10.1016/j.ejmech.2012.10.024
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, …, Dikic I (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587(7835):657–662. https://doi.org/10.1038/s41586-020-2601-5
Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216. https://doi.org/10.1126/science.8097061
Tan YC, Lee JC, Yusof M, Teh NS, B. P., and, Mohamed S, A. F (2020) Malaysian herbal monograph development and challenges. J Herb Med 23:100380.https://doi.org/10.1016/j.hermed.2020.100380
Yoshimoto FK (2020) The proteins of severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J 39(3):198–216. https://doi.org/10.1007/s10930-020-09901-4
Yu G, Zhou G, Zhu M, Wang W, Zhu T, Gu Q, Li D (2015) Neosartoryadins a and B, Fumiquinazoline Alkaloids from a Mangrove-Derived Fungus Neosartorya udagawae HDN13-313. Org Lett 18(2):244–247. https://doi.org/10.1021/acs.orglett.5b02964
Yu W, MacKerell AD (2016) Computer-aided Drug Design Methods. Methods Mol Biol 85–106. https://doi.org/10.1007/978-1-4939-6634-9_5
Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q (2011) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72(11–12):1436–1442. https://doi.org/10.1016/j.phytochem.2011.04.014
Zhang SP, Huang R, Li FF, Wei HX, Fang XW, Xie XS, Lin DG, Wu SH, He J (2016) Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 112:85–89. https://doi.org/10.1016/j.fitote.2016.05.013
Zhou M, Du G, Yang HY, Xia CF, Yang JX, Ye YQ, Gao XM, Li XN, Hu QF (2015) Antiviral Butyrolactones from the Endophytic Fungus Aspergillus versicolor. Planta Med 81(03):235–240. https://doi.org/10.1055/s-0034-1396153
Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India