Bioethanol production from seagrass waste, through fermentation process using cellulase enzyme isolated from marine actinobacteria

,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-021-00239-5
First Page: 581
Last Page: 591
Views: 1341


Keywords: Seagrass wrack, Cymodocea , Actinobacteria, Cellulase, Bioethanol


Abstract


Seagrass wrack can be utilized as a raw material to produce bioethanol, a sustainable biofuel, to overcome fossil fuel exhaustion and ecological issues. The present investigation focused on the production of bioethanol from seagrass wracks, utilizing acid and enzyme hydrolysis. The results reveal that the ethanol production (0.78 ml  g−1) from the seagrass species Cymodocea serrulata was maximum than C. rotundata (0.72 ml g−1) hydrolyzed by cellulase enzyme isolated from the marine actinobacterial strain. This investigation gives acceptable proof that the conversion of seagrass wrack to bioethanol could be a practical ecological solution for managing undesirable seagrass wrack, balancing carbon emission, and producing an economically valuable product. The results showed that Cymodocea species could be used as a substrate for bioethanol production.


Seagrass wrack, 
                Cymodocea
              , Actinobacteria, Cellulase, Bioethanol


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


  1. Aarthi C, Srinivasan M, Sivakumar K, Thangaradjou T (2009) Screening of carbohydrate degrading enzyme producing thermophilic actinobacteria from the mud volcano sediments of Andaman. Natl Acad Sci Lett 32(7&8):213–218

    Google Scholar 

  2. Abada EA, Masrahi YS, Al-Abboud M, Alnashiri HM, El-Gayar KE (2018) Bioethanol production with cellulase enzyme from Bacillus cereus isolated from sesame seed residue from the Jazan region. BioResources 13(2):3832–3845

    CAS Article Google Scholar 

  3. Abdel-Shakour EH, Roushdy MM (2009) An Investigation for cellulase activity of a Novel Antibiotic producing Streptomyces sp. Isolate H−1 from Egyptian Mangrove Sediment. Academia Arena 5:1

    Google Scholar 

  4. Abdulla R, Ariffin Z (2016) Quantitative Assessment of Seagrass as Bioethanol Feedstock. Transact Sci Technol 3(2):361–366

    Google Scholar 

  5. Ahmed FM, Rahman SR, Gomes DJ (2012) Saccharification of sugarcane bagasse by enzymatic treatment for bioethanol production. Malay J Microbiol 8(2):97–103

    CAS Google Scholar 

  6. Alam MZ, Manclur MA, Anwar MN (2004) Isolation, purification and characteriazation of cellulolytic enzymes produced by the isolate Streptomyces omiyaensis. Pakistan J Biol Sci 7(10):1647–1653

    Article Google Scholar 

  7. Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour Technol 129:92–99

    CAS PubMed Article PubMed Central Google Scholar 

  8. Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM et al (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett 205:277–282

    PubMed Article PubMed Central Google Scholar 

  9. Arunachalam R, Wesely EG, George J, Annadurai G (2010) Novel approaches for identification of Streptomyces noboritoensis TBG-V20 with cellulase production. Curr Res Bacteriol 3(1):15–26

    CAS Article Google Scholar 

  10. Au KS, Chan KY (1987) Purification and properties of endo−1, 4-b-glucanase from Bacillus subtilis. J Gen Microbiol 133:2155–2162

    CAS Google Scholar 

  11. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy 4(1):77–93

  12. Bligh EG, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Physiol 37:911–917

    CAS Google Scholar 

  13. Caudy AA (2017) Spectrophotometric analysis of ethanol and glucose concentrations in yeast culture media. Cold Spring Harbor Protocols 2017(9):pdb-prot089102

  14. Chellapandi P, Jani HM (2008) Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz J Microbiol 39(1):122–127

    CAS PubMed PubMed Central Article Google Scholar 

  15. Coupland GT, Duarte CM, Walker DI (2007) High metabolic rates in beach cast communities. Ecosystems 10:1341–1350

    CAS Article Google Scholar 

  16. Del Campo I, Alegria I, Zazpe M, Echeverria M, Echeverria I (2006) Dilute acid hydrolysis pre-treatment of agri-food wastes for bioethanol production. Ind Crops Prod 24:214–221

    Article CAS Google Scholar 

  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS Article Google Scholar 

  18. Ehrman CI, Himmel ME (1994) Simultaneous Saccharification and Fermentation of Pretreated Biomass Improving Mass Balance Closure. Biotechnol Tech 8(2):99–104

    CAS Article Google Scholar 

  19. Eisentraut A (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries

  20. Elfalah HWA, Ahmad A, Usup G (2013) Anti-microbial properties of secondary metabolites of marine Gordonia tearrae extract. J Agric Sci 5:94–101

    Google Scholar 

  21. George SP, Ahmad A, Rao MB (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresour Technol 77:171–175

    CAS PubMed Article Google Scholar 

  22. Gobalakrishnan R (2013) Ecology, diversity and bioelectricity potential of marine actinobacteria from the Havelock island of the Andamans, India. Thesis PhD, Annamalai University, India. pp 230

  23. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    CAS PubMed PubMed Central Article Google Scholar 

  24. Hapwood DA, Bibb MJ, Charter KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schremff H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. The. John Innes Foundation, Norwich, p 356

    Google Scholar 

  25. Haq I, Mukhtar H, Umber H (2006) Production of protease by Penicillium chrysogenum through optimization of environmental conditions. J Agri Soc Sci 2(1):23–25

    Google Scholar 

  26. Herrera S (2004) Industrial biotechnology-a chance at redemption. Nat Biotechnol 22:671–675

    CAS PubMed Article Google Scholar 

  27. Ishaque M, Kluepfel D (1980) Cellulase complex of a mesophillic Streptomyces strain. Can J Microbiol 26:183–189

    CAS PubMed Article Google Scholar 

  28. Jang HD, Chen KS (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3−1. World J Microbiol Biotechnol 19:263–268

    CAS Article Google Scholar 

  29. Kathiresan K, Balagurunathan R, Masilamaiselvam M (2005) Fungicidal activity of marine actinomycetes against phyotopathogenic fungi. Indian J Biotechnol 4:271–276

    Google Scholar 

  30. Kirkman H, Kendrick GA (1997) Ecological Significance and Commercial Harvesting of Drifting and Beach-Cast Macro-Algae and Seagrasses in Australia: A Review. J Appl Phycol 9:311–326

    Article Google Scholar 

  31. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    CAS PubMed Article Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS PubMed PubMed Central Article Google Scholar 

  33. Larsson S, Palmqvist E, Hagerdal BH, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    CAS Article Google Scholar 

  34. Lin Z, Marett L, Hughen RW, Flores M, Forteza I et al (2013) Neuroactive diol and acyloin metabolites from cone snail-associated bacteria. Bioorg Med Chem Lett 23:4867–4869

    CAS PubMed PubMed Central Article Google Scholar 

  35. Liu S, Trevathan-Tackett SM, Lewis CJE, Ollivier QR, Jiang Z, Huang X, Macreadie PI (2019) Beach-cast seagrass wrack contributes substantially to global greenhouse gas emissions. J Environ Manag 231:329–335

    CAS Article Google Scholar 

  36. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    CAS Article Google Scholar 

  37. Macreadie PI, Trevathan-Tackett SM, Baldock JA, Kelleway JJ (2017) Converting beach-cast seagrass wrack into biochar: a climate-friendly solution to a coastal problem. Sci Total Environ 574:90–94

    CAS PubMed Article Google Scholar 

  38. Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31(15):3362–3380

    Article CAS Google Scholar 

  39. Manivasagan P, Gnanam S, Sivakumar K, Thangaradjou T, Vijayalakshmi S, Balasubramanian T (2010) Studies on diversity of marine actinobacteria from Tamilnadu Part of Bay of Bengal, India. Libyan Agric Res Center J Int 1(6):362–374

    Google Scholar 

  40. Mandels M, Reese ET (1965) Inhibition of cellulases. Annu Rev Phytopathol 3:85–102

    CAS Article Google Scholar 

  41. Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, Ecology and Conservation. Springer, Netherlands, pp 159–192

    Google Scholar 

  42. Meena B, Rajan LA, Vinithkumar NV, Kirubagaran R (2013) Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 13(145):2–17

    Google Scholar 

  43. Meenakshi K, Rajkumar J, Salah M, Sivakumar K (2015) Cellulase production by a manglicolous actinobacterium: Optimization, characterization and partial purification. J Sci Transfer Environ Technol 8(4):173–177

    Google Scholar 

  44. Meinita MDN, Kang J, Jeong Y, Koo GT, Park HM, Hong YK (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol 24(4):857–862

    CAS Article Google Scholar 

  45. Munajad A, Subroto C (2018) Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2):364. https://doi.org/10.3390/en11020364

  46. Murugan M, Srinivasan M, Sivakumar K, Sahu MK, Kannan L (2007) Characterization of an actinomycete isolated from the estuarine finfish, Mugil cephalus Lin. (1758) and its optimization for cellulase production. J Sci Ind Res 66:383–389

  47. Nonomura H (1974) Key for classification and identification of 458 species of Streptomycetes included in ISP. J Ferment Technol 52:78–92

    Google Scholar 

  48. Pfeifer L, Classen B (2020) The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. Front Plant Sci 11:588754. doi:https://doi.org/10.3389/fpls.2020.588754

    Article PubMed PubMed Central Google Scholar 

  49. Philippsen A (2013) Energy Input, Carbon Intensity, and Cost for Ethanol Produced from Brown Seaweed. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada

  50. Pradhan S, Mishra BB, Rout S (2015) Screening of novel actinomycetes from Near Lake Shore sediments of the Chilika Lake, Odisha, India. Int J Curr Microbiol App Sci 4(8):66–82

    CAS Google Scholar 

  51. Pradeeba M, Dilipan E, Nobi EP, Thangaradjou T, Sivakumar K (2011) Evaluation of seagrasses for their nutritional value. Indian J Geo-Mar Sci 40(1):105–111

    Google Scholar 

  52. Premalatha N, Gopal NO, Arul Jose P et al (2015) Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol 6:1–11

    Article Google Scholar 

  53. Rajkumar J, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2012) Actinobacterial diversity of mangrove environment of the Bhitherkanika mangroves, East coast of Orissa, India. Int J Sci Res Publ 2:1–6

    Google Scholar 

  54. Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111

    CAS Article Google Scholar 

  55. Ravikumar S, Gokulakrishnan R, Kanagavel M, Thajuddin N (2011) Production of biofuel ethanol from pretreated seagrass by using Saccharomyces cerevisiae. Indian J Sci Technol 4(9):1087–1089

    CAS Article Google Scholar 

  56. Rodriguez-Chong A, Ramirez JA, Garrote G, Vazquez M (2004) Hydrolysis of sugarcane bagasse using nitric acid: A kinetic assessment. J Food Eng 61:143–152

    Article Google Scholar 

  57. Romanowska I, Kwapisz E, Mitka M, Bielecki S (2010) Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. J Ind Microbiol Biotechnol 37:625–629

    CAS PubMed Article Google Scholar 

  58. Sahu MK, Sivakumar K, Kannan L (2007) Alkaline protease production by an actinomycete strain isolated from the tiger shrimp, Penaeus monodon (Fabricius, 1798). Nat Acad Sci Lett 30: 61–65

  59. Senthilkumar S, Sivakumar K, Kannan L (2005) Mercury resistant halophilic actinomycetes from the salt marsh environment of Vellar estuary. Southeast Coast of Indian J Aquat Biol 20:141–145

    CAS Google Scholar 

  60. Shanmughapriya S, Seghalkirn G, Selvin J, Anto Thamas T, Rani C (2009) Optimization, purification and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 14:67–75

    CAS Google Scholar 

  61. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) “Determination of Extractives in Biomass,” Tech. Rep. NREL/TP-510-42619, National Renewable Energy Laboratory, Golden, Colo, USA

  62. Sowani H, Kulkarni M, Zinjarde S (2018) An insight into the ecology, diversity and adaptations of Gordonia species. Crit Rev Microbiol 44:1–21

    Article Google Scholar 

  63. Stobdan T, Sinha A, Singh RP, Adhikari DK (2008) Degradation of pyridine and 4-methylpyridine by Gordonia terrea IIPN1. Biodegradation 19:481–487

    CAS PubMed Article Google Scholar 

  64. Syed NNF, Zakaria MH, Bujang JS (2016) Fiber characteristics and papermaking of seagrass using Hand-beaten and blended pulp. Bioresources 11:5358–5380

    CAS Article Google Scholar 

  65. Thangaradjou T, Raja S, Subhashini P (2011) Seagrass as fertiliser. Seagrass-Watch 43:26–27

    Google Scholar 

  66. Torbatinejad NM, Sabine JR (2001) Laboratory evaluation of some marine plants on South Australian Beaches. J Agric Sci Technol 3:91–100

    Google Scholar 

  67. Vijayakumar R, Muthukumar C, Thajuddin N, Panneerselvam A, Saravanamuthu R (2007) Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica 21:59–65

    CAS Article Google Scholar 

  68. Vinogradova SP, Kushnir SN (2003) Biosynthesis of hydrolytic enzymes during cocultivation of macro and micromycetes. Appl Biochem Microbiol 39:573–575

    CAS Article Google Scholar 

  69. Viola E, Cardinale M, Santarcangelo R, Villone A, Zimbardi F (2008) Ethanol from eel grass via steam explosion and enzymatic hydrolysis. Biomass Bioenergy 32(7):613–618

    CAS Article Google Scholar 

  70. Vyas A, Deepak V, Vyas KM (2005) Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49. J Sci Ind Res 64:281–286

    CAS Google Scholar 

  71. Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286

  72. Xie Y, Zhou S, Xu Y, Wu W, Xia W, Zhang R, Huang D, Huang X (2020) Gordonia mangrovi sp. nov. a novel actinobacterium isolated from mangrove soil in Hainan. Int J Systematic Evol Microbiol 70(8):4537–4543. https://doi.org/10.1099/ijsem.0.004310

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Acknowledgements


All authors are thankful to the Department of Botany and Microbiology, AVVM. Pushpam College (Autonomous), Tanjore, and Department of Microbiology, Bharathidasan University, Tiruchirappalli. Dr. J. Rajkumar (File no. PDF/2017/002538) was grateful to SERB-DST for providing fund through NPDF program. The contents and views reported in this manuscript are of individual authors and not reflect the views and positions of the institutions they belong.


Author Information


Rajkumar J.
Department of Botany and Microbiology, A.V.V.M Sri Pushpam College (Autonomous), Thanjavur, India
rajkcas.actino@gmail.com
Dilipan E.
Department of Biotechnology, Selvam College of Technology (Affiliated to Anna University), Namakkal, India
gerberadilip@gmail.com