Actualizing the worldwide distribution and main uses of Parkinsonia aculeata L., Sp. Pl

*Article not assigned to an issue yet

, , ,


Review Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-023-00692-4
First Page: 0
Last Page: 0
Views: 1045


Keywords: Palo verde, Biotechnological uses, Biofuel, Nature reserve


Abstract


The palo verde (Parkinsonia aculeata L. Sp. Pl.) (Ulibarri 2008), although it is native to a semidesert region, it has been distributed throughout various regions worldwide, adapting to favorable and unfavorable environmental conditions. Starting from isolated, although abundant, studies on this species and its uses, an investigation was carried out with the aim of actualizing the international distribution and its main uses. The findings showed that palo verde is distributed on all continents, with a greater presence in America, Africa, and Australia. The palo verde can be found above sea level from 8.6 to 1310 m. Palo verde adapts to heat, drought, salinity, and waterlogging but is sensitive to cold conditions. There is only a single find from its habitat in North Asia. The main international uses of palo verde are natural reserve, medicinal, industrial, biocontrol and biofuel applications. Only in India and Mexico are these six uses given, together with their use as biocontrol agents of plant diseases, in Mexico. Most countries use verde nuts as natural reserves and medicinal and biofuel fines. Among the uses for medicinal purposes, the most diverse is to reduce diabetes mellitus.


Palo verde, Biotechnological uses, Biofuel, Nature reserve


*Get Access

(*Only SPR Members can get full access. Click Here to Apply and get access)

Advertisement

References


Adhikari A, White JD (2014) Plant water use characteristics of five dominant shrub species of the Lower Rio Grande Valley, Texas, USA: implications for shrubland restoration and conservation. Conserv Physiol 2:1cou005. https://doi.org/10.1093/conphys/cou005


Araújo TG, De Oliveira AG, Vecina JF, Marin RM, Franco ES, Saad MJA, de Sousa Maia MB (2016) Parkinsonia aculeata (Caesalpineaceae) improves high-fat diet-induced insulin resistance in mice through the enhancement of insulin signaling and mitochondrial biogenesis. J Ethnopharmacol 183:95–102. https://doi.org/10.1016/j.jep.2016.02.048


Argentel-Martínez L, Peñuelas-Rubio O, González-Aguilera J, Garatuza-Payán J (2023a) Leaf development dynamics of Parkinsonia aculeata L., Sp. Pl. under high temperature, drought and salinity conditions in Sonoran semi-desert. Ciência Florestal, vol. 32, In Press


Argentel-Martínez L, Peñuelas-Rubio O, Velázquez JRT, Aguilera JG (2023b) Phytotoxicity of hydroalcoholic extracts of Parkinsonia aculeata L. sp. Pl., in tomato plants. Polyphenol and flavonoid content. Advances in biology through agronomy, aquaculture, coastal and environmental sciences, vol 6. Pantanal Editora, Brazil


Argentel-Martínez L, Garatuza-Payan J, Yepez EA, Arredondo T, de Los Santos-Villalobos S (2019) Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley. Mexico PeerJ 7:1e7029. https://doi.org/10.7717/peerj.7029


Arvizu-Quintana EF, Argentel-Martínez L, Peñuelas-Rubio O, Leyva-Ponce A, García-Urías J (2021) Extractos hidroalcohólicos de Parkinsonia aculeata L. Sp. Pl. para el biocontrol de Fusarium oxysporum Schlecht. Renew Energ Biomass Sustain 3(2):46–52


Barasa B, Turyabanawe L, Akello G, Gudoyi PM, Nabatta C, Mulabbi A (2022) The energy potential of harvested wood fuel by refugees in Northern Uganda. Sci World J 1569960. https://doi.org/10.1155/2022/1569960


Besson E, Chopin J, Gunasegaran R, Nair AR (1980) C-glycosylflavones from Parkinsonia aculeata. Phytochem 19(12):2787–2788. https://doi.org/10.1016/S0031-9422(00)83974-6


CABI (2021) Parkinsonia aculeata (Mexican palo-verde): In: CAB International (ed) Invasive Species Compendium, Wallingford, UK


Calvo-Alvarado JC, Jiménez-Rodríguez CD, Solano JC, Arias-Rodríguez O (2022) Interception and redistribution of precipitation by Parkinsonia aculeata L.: implications for Palo Verde National Park Wetlands, Costa Rica. Water 14(3):311. https://doi.org/10.3390/w14030311


Castro J, Tavares L, Castro M (2022) Climate change threats to semiarid transhumance grazing systems: proposals for adaptation in Cabo Verde. In: Proceedings of 2021 IGC/IRC Congress, University of Kentucky


Copping A, Yang Z, Miller I, Apple J, Mauger G, Voisin N, Fullerton A, Sun N, Freeman M (2018) Providing modeling tools on extreme events of climate change to Puget Sound managers. Salish Sea Ecosystem Conference


Cracco P, Cabrera C, Cadenazzi M, Galietta Positano G, Moreni A, Santos E, Zaccari F (2022) Uruguayan honey from different regions, characterization and origin markers. Agrociencia Uruguay 26(1):e947. https://doi.org/10.31285/AGRO.26.947


Dalavi J, Pujar R, Kambale S, Jadhav-Rathod V, Yadav S (2021) Legumes (Angiosperms: Fabaceae) of Bagalkot district, Karnataka, India. J Threat Taxa 13(5) 18283-96. https://doi.org/10.11609/jot.6394.13.5.18283-18296


Devora-Isiordia G, Valdez-Torres L, Granillo-Moreno K (2018) Evaluation of the effect of the salinity of irrigation water on the yield of castor plant hybrids (Ricinus communis L.) in Mexico. Int J Hydrol 2(5):613–616


Divya B, Mruthunjaya K, Manjula SN (2011) Parkinsonia aculeata: a phytopharmacological review. Asian J Plant Sci 10(3):175–181


Domínguez-Gómez TG, Juárez-Reyes AS, CerrilloSoto MA, Guerrero-Cervantes M, GonzálezRodríguez H, Olivares-Sáenz E, Ramírez-Lozano RG, Alvarado MDS (2014) Nutritional value of Acacia amentacea and Parkinsonia texana grown in semiarid conditions. Italian J Animal Sci 13:808–815. https://doi.org/10.4081/ijas.2014.3486


Feng Q, Wang B, Chen M, Wu P, Lee X, Xing Y (2021) Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: a review. Resour Conserv Recycl 164:105204


Franco ES, Nascimento E, Vasconcelos DA, Silva PA, Novaes TL, Feitosa MG, Maia MB (2022) Polar fraction from Parkinsonia aculeata aerial parts extract improves imbalanced metabolic profile and reduces proinflammatory interleukin levels in white adipose tissue in obese rats induced by western diet. J Ethnopharmacol 282:114557. https://doi.org/10.1016/j.jep.2021.114557


Gallas G, Pavao-Zuckerman M (2022) Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts. Sci Rep 12(1):5794. https://doi.org/10.1038/s41598-022-09769-7


Jain KL, Dhingra HR (1991) Physical and biochemical characteristics of Parkinsonia aculeata L. and Pongamia pinnata Vent. Flowers. J Apic Res 30(3–4):146–150. https://doi.org/10.1080/00218839.1991.11101249





Leite ACR, Araújo TG, Carvalho BDM, Silva NHD, Lima VLM, Maia MBDS (2007) Parkinsonia aculeata aqueous extract fraction: biochemical studies in alloxan-induced diabetic rats. J Ethnopharmacol 111(3):547–552. https://doi.org/10.1016/j.jep.2006.12.032


Maqbool A, Tariq M, Hanif A, Dawar S (2020) Efficacy of Parkinsonia aculeata and Cassia fistula with selected microbial antagonists for the improvement of growth and reduction in root diseases. Int J Biol Res 8(1–2):35–42


Marwa GS, Ahmed AA, Mohamed RA (2018) Effect of vesicular-arbuscular mycorrhizal fungus and humic acid application on the growth of Parkinsonia aculeata L. seedlings. Alex J Agril Sci 63(2):119–127


Mukherjee A, Banerjee AK, Raghu S (2021) Biological control of Parkinsonia aculeata: using species distribution models to refine agent surveys and releases. Biol Cont 159:104630. https://doi.org/10.1016/j.biocontrol.2021.104630


Nunell GV, Gomez-Delgado E, Bonelli PR, Cukierman AL (2022) Effectiveness of activated carbons developed by different strategies in the removal of diclofenac sodium and salicylic acid from water. J Porous Mater 1–11. https://doi.org/10.1007/s10934-022-01252-y





Pérez-Domínguez R, Jurado E, González-Tagle M, Flores J, Aguirre-Calderón O, Pando-Moreno M (2013) Germinación de especies del matorral espinoso tamaulipeco en un gradiente de altitud. Rev Mex Cienc Forestales 4(17):156–163


Perroni-Ventura Y, Montanã C, García-Oliva F (2010) Carbon-nitrogen interactions in fertility island soil from a tropical semiarid ecosystem. Func Ecol 24:233–242. https://doi.org/10.1111/j.1365-2435.2009.01610.x








Qasim M, Fujii Y, Ahmed MZ, Aziz I, Watanabe KN, Ajmal Khan M (2019) Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biol 153(6):767–774. https://doi.org/10.1080/11263504.2018.1549607


Rafter MA, McKay F, Parisi M, Sosa A, Heard TA, White A, Raghu S (2022) Biology, host specificity and DNA barcoding of cryptic Eueupithecia species (Lepidoptera: Geometridae), and implications for biological control of Parkinsonia aculeata (Fabaceae) in Australia. Aust Entomol 61(1):124–132. https://doi.org/10.1111/aen.12586


Ramírez-Valiente JA, Santos del Blanco L, Alía R, Robledo‐Arnuncio JJ, Climent J (2022) Adaptation of Mediterranean forest species to climate: lessons from common garden experiments. J Ecol 110(5):1022–1042. https://doi.org/10.1111/1365-2745.13730


Ribas-Marquès E, Díaz-Calafat J (2021) The asian giant resin bee Megachile sculpturalis Smith 1853 (Hymenoptera: Apoidea: Megachilidae), a new exotic species for the bee fauna of Mallorca (Balearic Islands, Spain). J Apic Res 60(3):506–511. https://doi.org/10.1080/00218839.2021.1874177


Richardson DM, Witt AB, Pergl J, Dawson W, Essl F, Kreft H, Pyšek P (2022) Plant Invasions in Africa. In: Clements DR, Upadhyaya MK, Joshi S, Shrestha A (eds) Global plant invasions. Springer, Cham. https://doi.org/10.1007/978-3-030-89684-3_11


Romão MVV, Mansano VDF (2021) Taxonomic review of the species of Parkinsonia (Leguminosae, Caesalpinioideae) from the Americas. Rodriguésia 72. https://doi.org/10.1590/2175-7860202172119


Rueda-Torres JR, León-Pesqueira LD, Gatica-Colima AB (2022) Fabaceas of the flora and fauna protection area medanos de Samalayuca. Chihuahua Mexico Polibotánica 53:1–12. https://doi.org/10.18387/polibotanica.53.1


Saavedra-Carhuatacto DM, Aguinago-Castro F, RojasIndrogo C, Delgado-Paredes GE (2014) Analysis of pollen loads collected by honey bees (Apis mellifera L.) from Lambayeque Province (Peru): botanical origin and protein content. J Glob Biosci 3(1):285–298


Sharma S, Vig AP (2013) Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. Sci World J 604865. https://doi.org/10.1155/2013/604865


Sharma S, Sharma S, Vig AP (2018) Antigenotoxic potential of plant leaf extracts of Parkinsonia aculeata L. using Allium cepa assay. Plant Physiol Biochem 130:314–323. https://doi.org/10.1016/j.plaphy.2018.07.017


Silva J, Paço TA, Sousa V, Silva CM (2021) Hydrological performance of green roofs in Mediterranean climates: a review and evaluation of patterns. Water 13(18):2600. https://doi.org/10.3390/w13182600





Ulibarri EA (2008) Los géneros de Caesalpinioideae (Leguminosae) presentes en Sudamérica. Darwiniana nueva serie 46(1):69–163


Van Klinken RD, Heard TA (2012) Parkinsonia aculeata L.–Parkinsonia, Biological control of weeds in Australia. CSIRO Publishing, Melbourne: 437–447





Zabala JM, Exner E, Cerino C, Buyatti M, Cuffia C, Marinoni L, Kern V, Pensiero JF (2021) Recursos fitogenéticos forestales, forrajeros, de interés apícola y paisajístico nativos de la provincia de Santa Fé (Argentina). Revista FAVE-Ciencias Agrarias 20(1):99. https://doi.org/10.14409/fa.v20i1.10253


Gonzáles, H. H. S., Peñuelas-Rubio, O., Argentel-Martínez, L., Ponce, A. L., Andrade, M. H. H., Hasanuzzaman, M., ... & Teodoro, P. E. (2021) Salinity effects on water potential and the normalized difference vegetation index in four species of a saline semi-arid ecosystem. PeerJ, 9, e12297.https://doi.org/10.7717/peerj.12297


Giraldo M, Cox H, Hasenhüttl C. 2015. Walking guide to the campus trees. California: California EE.UU. Institute for Sustainability Report. 105


Kamal, Raka, and Naina Mathur. “3Rotenoids from Parkinsonia aculeata L and their in vitro amoebicidal activity”. Asian J Exp Sci 21.1 (2007): 317–323

 


Acknowledgements


To National Technological of Mexico/ Campus Yaqui Velley and Mario Alberto López encina for mapping collaboration


Author Information


Argentel-Martínez Leandris
Departamento de Ingenierías, Tecnológico Nacional de México, Instituto Tecnológico del Valle del Yaqui, Bácum, México

Peñuelas-Rubio Ofelda
Departamento de Ingenierías, Tecnológico Nacional de México, Instituto Tecnológico del Valle del Yaqui, Bácum, México


Hasanuzzaman Mirza
Department of Agronomy, Sher-e-Bangla Agricultural University (SAU), Dhaka, Bangladesh

mhzsauag@yahoo.com
Aguilera Jorge González
Federal University of Mato Grosso do Sul, Chapadão do Sul, Brazil