Antimicrobial activity of Petivera alliacea L. root and its constituents: in vitro and in silico studies

*Article not assigned to an issue yet

, , , , ,


Research Articles | Published:

Print ISSN : 0970-4078.
Online ISSN : 2229-4473.
Website:www.vegetosindia.org
Pub Email: contact@vegetosindia.org
Doi: 10.1007/s42535-024-01085-x
First Page: 0
Last Page: 0
Views: 285


Keywords: n Petivera alliacea L. root, Antibacterial activity, Antifungal activity, Volatile Oils, Molecular docking


Abstract


This study aims to evaluate the antimicrobial properties of Petiveria alliacea root fractions and volatile oils against selected bacteria and fungi via in vitro and in silico approaches. Petivera allliaceae dried root methanol extract was partitioned into n-hexane and methanol fractions, while volatile oil was extracted using the Clevenger-type hydro distillation method. Antimicrobial activities of fractions and volatile oil were evaluated against Bacillus firmusLactobacillus rhamnosaLysinibacillus fusiformisStenotrophomonas pavaniCandida albicans, Candida tropicalisAspergillus tamariPenicillum spp., and Candida krusei isolated from dental caries. The fractions and volatile oil were subjected to Gas Chromatography-Mass Spectrometry (GC–MS) analysis for phytochemical screening. Molecular studies were conducted on the compounds identified in all the samples. Data were analyzed using analysis of variance (ANOVA) and presented as mean ± standard deviation. The fractions and volatile oil inhibited the proliferation of selected microorganisms. The n-hexane fraction had the highest antimicrobial effect. The zones of inhibitions of the samples ranged between 6.7 ± 1.2 mm and 34 ± 9.64 mm as well as MIC of 0.4 mg/mL–6.3 mg/mL against the bacteria while against fungi, it is 8.3 ± 2.1 mm to 19 ± 0.6 mm with MIC of 3.13 mg/mL to 12.5 mg/mL. GC–MS analysis revealed 59 compounds. Two compounds, 11-trans-octadecadienoate (C_6), and tricosane (C_16), detected in the n-hexane fraction, have the highest antifungal and antibacterial potential in silico. The study revealed that Petivera alliacea roots n-hexane fraction, methanol fraction, and volatile oil possess antimicrobial activity against fungi and bacteria with the hexane fraction being the most effective. Petivera allliaceae dried root will be useful in the formulation of herbal toothpaste.


n                     Petivera alliacea L. root, Antibacterial activity, Antifungal activity, Volatile Oils, Molecular docking


*Get Access

(*Only SPR Life Members can get full access.)

Advertisement

References


Adesanya EO, Oyesiku OO, Adesanya OO, Ogunlakin AD, Odugbemi AI, Egieyeh SA. Phytochemical components and GC–MS analysis of Petiveria alliacea L. fractions and volatile oils. Physical Sciences Reviews. 2023 Apr 17(0).





Bhattacherjee D, Raina K, Mandal TK, Thummer RP, Bhabak KP (2022) Targeting Wnt/β-catenin signaling pathway in triple-negative breast cancer by benzylic organotrisulfides: Contribution of the released hydrogen sulfide towards potent anti-cancer activity. Free RadicBiol Med 191:82–96


Conceição BC, Silva TA, Pantoja LV, Luz DA, Cardoso EK, Reis LD, Raiol-da-Silva MC, Kussler MS, Maia CS, Fontes-Júnior EA (2023) Amazonian Plants: A Global Bibliometric Approach to Petiveria alliacea L. Pharmacological and Toxicological Properties Plants 12(18):3343


Cruz-Salomón KD, Cruz-Rodríguez RI, Espinosa-Juárez JV, Cruz-Salomón A, Briones-Aranda A, Ruiz-Lau N, Ruíz-Valdiviezo VM (2022) In vivo and in silico study of the antinociceptive and toxicological effect of the extracts of Petiveria alliacea L. Leaves Pharmaceuticals 15(8):94


de Lima TC, Morato GS, Takahashi RN (1991) Evaluation of antinociceptive effect of Petiveriaalliacea (Guine) in animals. Mem Inst Oswaldo Cruz 86:153–158


Dosoky NS, Satyal P, Sorensen A, Setzer WN (2023) Volatile constituents and antimicrobial activity of Naio (Myoporum Sandwicense A Gray), a native Hawaiian Tree. Compounds 3(1):142–152





Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24(6):591–604


Hargrove TY, Friggeri L, Wawrzak Z, Qi A, Hoekstra WJ, Schotzinger RJ, York JD, Guengerich FP, Lepesheva GI (2017) Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem 292(16):6728–6743


Hernández JF, Urueña CP, Cifuentes MC, Sandoval TA, Pombo LM, Castañeda D, Asea A, Fiorentino S (2014) A Petiveriaalliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism. J Ethnopharmacol 153(3):641–649


Kerdudo A, Gonnot V, NjohEllong E, Boyer L, Michel T, Adenet S, Rochefort K, Fernandez X (2015) Essential oil composition and biological activities of Petiveriaalliacea L. from Martinique. J Essent Oil Res 27(3):186–196


Lawal IO, Sowunmi LI, Olaniyi MB, Jegede AE, Akanni FO, Akinwumi IA, Babalola OY (2024) Ethnobotany, chemistry and toxicity of Petivera alliacea: a review. Functional Food Sci. 4(2):69–82


Levinn CM, Cerda MM, Pluth MD (2020) Activatable small-molecule hydrogen sulfide donors. Antioxid Redox Signal 32(2):96–109


Lopes-Martins RA, Pegoraro DH, Woisky R, Penna SC, Sertie JA (2002) The anti-inflammatory and analgesic effects of a crude extract of Petiveriaalliacea L. (Phytolaccaceae). Phytomedicine 9(3):245–248


Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49(16):4805–4808


Mahlo SM, Chauke HR, McGaw L, Eloff J (2016) Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr J Tradit Complement Altern Med 13(4):216–222


Morales C, Gomez-Serranillos MP, Iglesias I, Villar AM, Cáceres A (2001) Preliminary screening of five ethnomedicinal plants of Guatemala. Farmaco 56(5–7):523–526


Oke DG, Oluranti OO (2019) Antifungal, antibacterial and phytochemical properties of Petiveria alliacea plant from Iwo. Nigeria J Chem Res 4(1):12–18


Ouf SA, Ali MI, Haggag MG, Elsafty DO, Faraag AH (2022) Enhancement of antidermatophytic activities of Citrullus colocynthis Schrad collected from different ecological habitats in Egypt using fluconazole. Phytomedicine plus 2(1):100178


Oyeleke AM, Adeyemi OA, Egbeyale LT, Sobayo RA (2021) Antimicrobial, immunomodulatory and hepatomodulatory effects of aqueous extracts of Petiveriaalliacea root and leaf on growing pullets. Span J Agric Res 19(1):e0502


Poli G, Granchi C, Rizzolio F, Tuccinardi T (2020) Application of MM-PBSA methods in virtual screening. Molecules. https://doi.org/10.3390/molecules25081971


Salo-Ahen OMH, Alanko I, Bhadane R, Bonvin AMJJ, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E, Marimuthu P, Mirza MU, Mustafa G, Nunes-Alves A, Pantsar T, Saadabadi A, Singaravelu K, Vanmeert M (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. https://doi.org/10.3390/pr9010071


Serrano-Aroca Á, Takayama K, Tuñón-Molina A, Seyran M, Hassan SS, Pal Choudhury P, Uversky VN, Lundstrom K, Adadi P, Palù G, Aljabali AA (2021) Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano 15(5):8069–8086


Skok Z, Barančoková M, Benek O, Cruz CD, Tammela P, Tomašič T, Zidar N, Mašič LP, Zega A, Stevenson CE, Mundy JE (2020) Exploring the chemical space of benzothiazole-based DNA gyrase B inhibitors. ACS Med Chem Lett 11(12):2433–2440


Sydor BG, Ramos-Milaré ÁC, Pereira MB, Brustolin AÁ, Montaholi DC, Lera-Nonose DS, Negri M, de Lima Scodro RB, Teixeira JJ, Lonardoni MV (2022) Plants of the Phytolaccaceae family with antimicrobial activity: a systematic review. Phytother Res 36(9):3505–3528


Urquhart DM, Zheng Y, Cheng AC, Rosenfeld JV, Chan P, Liew S, Hussain SM, Cicuttini FM (2015) Could low grade bacterial infection contribute to low back pain? A Systematic Review BMC Med 13(1):1–3

 


Acknowledgements


The authors acknowledged the Department of Biochemistry, Olabisi Onabanjo University, and Enol Laboratory for providing the facilities to carry out the research.


Author Information


Adesanya Enitan Omobolanle
Department of Biochemistry, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
eitadesanya@gmail.com
Adesanya Olumide Olatunde
Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria


Ogunlakin Akingbolabo Daniel
Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, Nigeria

gbolaogunlakin@gmail.com
Ajayi-Odoko Omolola Adenike
Microbiology Programme, Bowen University, Iwo, Nigeria


Ojo Oluwafemi Adeleke
Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, Nigeria

Odugbemi Adeshina Isaiah
Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, Nigeria
adeshina.odugbemi@gmail.com